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Supplementary Material

A. Implementation Details
Additional Details All experiments are conducted using
a single NVIDIA A100 GPU. For Representation Stabi-
lization, we utilize the hidden states from the Upblocks of
the U-Net at resolutions of 32 × 32 and 64 × 64. Addi-
tionally, for Attention Alignment, we employ the attention
maps from the same Upblocks. We use the AdamW opti-
mizer [18] for training all models. The learning rate and
other optimizer hyperparameters are set as described in the
main text. In Adaptive Data Augmentation, we apply zoom-
out transformations with scales ranging from 1 to 3 and ro-
tations within ±15 degrees. We acknowledge that further
experiments with additional augmentation types could be
beneficial and are left for future work. For the Exponential
Moving Average (EMA) calculations, we set the smoothing
factor α to 0.1. All generated images are generated using a
Classifier-Free Guidance (CFG) [12] with scale of 7.5. For
DCO [17], to ensure a fair comparison, we use only CFG
without Reward Guidance.

GPT-4o Caption Details Building upon Comprehensive
Caption [17], we employ GPT-4o [1] to generate captions
that emphasize on the background and context rather than
the primary concept, allowing the token to learn the concept
as directly as possible. We provide the reference data into
GPT-4o and instruct it to describe each image, focusing on
the surroundings and context while keeping the description
of the central object as simple as possible. We observe that
when prompts contain detailed descriptions of the concept,
the model struggles to learn those details effectively. By
shifting the focus of captions to background and contextual
elements, we ensure that the model learns rich and diverse
information. This approach not only enhances the learning
of the desired concept through the token but also prevents
the model from learning about non-target objects. By omit-
ting detailed descriptions of the concept’s color, texture, and
other fine-grained details, we promote more robust learning
and achieve better generalization when generating images
conditioned on the learned concept.

Computations Our method requires an extra forward
pass to retrieve the intermediate features of SDXL [22],
which increases computational overhead—an approach also
employed by the state-of-the-art method, DCO [17]. How-
ever, since LoRA [14] loaded into SDXL can be toggled on
or off during the forward pass, our approach requires only
the additional memory needed for the intermediate features,
without the need to load a separate pretrained model.

B. Additional Experimental Results

B.1. Qualitative Comparisons

In Figure 9 and 10, we present additional qualitative com-
parisons between APT and baseline methods across diverse
datasets and text prompts to demonstrate our model’s supe-
rior performance. Our qualitative analysis reveals several
key advantages of APT over existing approaches in four
critical aspects described in Section 4.2. The baseline meth-
ods exhibit notable limitations in maintaining scene context
and integrating prior knowledge, often generating overly fo-
cused, decontextualized images. For instance, when gener-
ating images of sneakers, baseline methods tend to gener-
ate isolated views that fail to capture the impressionist style
specified in the prompt, while APT successfully incorpo-
rates these objects into coherent, prompt-aligned scenes that
reflect the artistic direction.

APT demonstrates remarkable capability in preserving
prior knowledge from pretrained models, particularly in
scenarios involving artistic style integration. When gener-
ating images of an alarm clock, APT successfully captures
both the Magritte-style surrealist background and the dis-
tinctive texture of LEGO building blocks, while baseline
methods struggle to maintain these artistic elements, of-
ten defaulting to conventional representations that lack the
specified stylistic characteristics. This showcases the abil-
ity of APT to simultaneously handle multiple style require-
ments while maintaining object consistency.

B.2. Ablation Study

We provide additional ablation results and analysis (see Ta-
ble 1 and Figure 7) to further demonstrate the impact of
each component in our proposed APT framework. These
results complement Section 4.5 and offer deeper insights
into how each component contributes to mitigating overfit-
ting and preserving prior knowledge.

Adaptive Training Adjustment (ATA) ATA immedi-
ately improves the baseline by mitigating overfitting. As
shown in Table 1, applying ATA to the base model results
in a modest increase in text-image similarity scores (with
slight improvements in both CLIP-T and HPSv2) and a sig-
nificant reduction in FID, which indicates better fidelity and
diversity. Qualitatively, as illustrated in Figure 7 (3rd col-
umn), the “zoomed-in” effect observed in the base model’s
outputs is eliminated with ATA. The personalized object is
no longer unnaturally enlarged or forced into the center; in-
stead, it is rendered with greater flexibility in layout. This



demonstrates that by introducing adaptive data augmenta-
tion and loss weighting, ATA effectively prevents the model
from overfitting to a specific region or scale, thereby allow-
ing for more natural object placement and pose variation.

Representation Stabilization (RS) Building on ATA, the
addition of RS further improves the model’s performance.
In Table 1, RS improves metrics related to prior preserva-
tion and alignment—for instance, increasing HPSv2 (indi-
cating better prompt alignment) while slightly decreasing
DINOv2 similarity (suggesting reduced over-tuning to ref-
erence details). Figure 7 (4th column) confirms that RS
stabilizes intermediate representations during fine-tuning,
which reduces the over-saturation of the subject’s texture.
By adjusting the distribution of latent features, RS prevents
direct texture memorization, enabling the model to gener-
alize better across different scenes and lighting conditions,
while preserving the pretrained knowledge to adhere to the
text prompt structure.

Attention Alignment (AA) Finally, incorporating AA
(yielding the full APT model) unifies the benefits of the pre-
vious components and further refines the output. As shown
in Table 1, AA helps the model maintain high text-image
similarity while achieving low FID values. Supplementary
metrics such as Recall also improve with AA, indicating en-
hanced output diversity. Figure 7 (5th column) demonstrates
that AA improves semantic coherence: when applied, a per-
sonalized figurine is generated not only with its identity pre-
served but also with background elements and contextual
cues that closely align with the prompt. AA achieves this by
explicitly aligning the model’s attention maps with those of
the pretrained model, ensuring that attention is distributed
across all prompt elements rather than being overly concen-
trated on the new concept token.

Overall Analysis The supplementary ablation study con-
firms that each component in APT contributes both indi-
vidually and synergistically. ATA primarily mitigates spa-
tial overfitting by freeing the object from a constrained,
zoomed-in view. RS addresses feature-space overfitting by
maintaining generalizable intermediate representations, and
AA combats attention overfitting by ensuring a balanced fo-
cus across the entire prompt and scene. Although minor
trade-offs (such as a slight decrease in precision with AA)
are observed, they are more than compensated for by major
gains in diversity and overall image coherence. Together,
these results reinforce our claim that APT’s components are
complementary and collectively enable state-of-the-art per-
formance in personalized diffusion model training with lim-
ited data.

Base (DreamBooth) + ATA

boy figurine playing in a garden, impressionist painting style

boy figurine riding a bicycle through a city park, urban sketch style

+ RSSDXL (prior) + AA (full APT)

Figure 7. Additional Ablation Study of APT Components. We
evaluate the contribution of each component in our method by
incrementally adding Adaptive Training Adjustment (ATA), Rep-
resentation Stabilization (RS), and Attention Alignment (AA) to
Base (DreamBooth).

B.3. Motivation for Adaptive Loss Weighting
Given a paired dataset of images x and captions c, diffusion
models are trained using a simplified version of the varia-
tional bound objective [13, 26]:

Lsimple(θ;D) := E(x,c)∼D,ϵ,t

[
ω(t)∥ϵ− ϵθ(xt; c, t)∥2

]
,

(8)
where xt = αtxt−1 + σtϵ for ϵ ∼ N (0, I), t ∼ U(0, T ).
ω(t) is a weighting function allowing the model to focus on
more challenging denoising tasks at larger timestep t and
make better sample quality. Min-SNR [10] improves the
convergence speed of training by considering the reverse
process as a multi-task problem with varying difficulty lev-
els and applying different clamped loss weights for each
timestep interval.

However, since the training dynamics of personalizing
diffusion models with limited data vary across different
datasets, this necessitates excessive time and effort for hy-
perparameter optimization. Figure 8 illustrates the differ-
ences between the predicted noise of the pretrained SDXL
model [22] and that of the model fine-tuned using the
DreamBooth [27] method, as follows:

∆Noise = ∥ϵϕ(xt; c, t)− ϵθ(xt; c, t)∥2 (9)

As training progresses, the model loses the original dis-
tribution due to excessive shifts in the noise prediction, fo-
cusing solely on memorizing the training data and conse-
quently degrading the model’s ability to generalize to un-
seen prompts. This phenomenon appears similar across all
datasets, but different overfitting patterns can be observed.
At the end of training, the predicted noise difference be-
tween the model trained on the backpack (dog) dataset and
the pretrained model is more than twice as large as that of
the model trained on the fringed boot dataset. While severe
overfitting may occur in specific datasets, this pattern does
not generalize across all objects. Against this background,



in Section 3.1, we introduce an Adaptive Overfitting Indi-
cator that quantitatively measures the degree of overfitting
during training in a dataset-dependent manner. Since the
degree of overfitting varies across different datasets, our
indicator adjusts adaptively during training. Additionally,
we design a weighting scheme to reduce the impact of the
loss accordingly when overfitting is detected, allowing the
weights to vary based on the dataset rather than remaining
fixed, as in previous approaches.

Training step

D
iff

er
en

e 
in

 P
re

di
ct

ed
 N

oi
se

Figure 8. Difference in Predicted Noise. The difference in pre-
dicted noise between SDXL (prior) and DreamBooth [27] models
is plotted over training iterations. Since the degree of overfitting
varies across different datasets, we were motivated to detect over-
fitting during training and adjust the impact of the loss accordingly.

B.4. Application to Stable Diffusion V2.1
To demonstrate that our proposed APT is not only appli-
cable to Stable Diffusion XL (SDXL) but also competitive
when applied to other models, we conduct experiments us-
ing Stable Diffusion V2.1. Most existing personalization
methods have been developed and evaluated on Stable Dif-
fusion versions 1.4 or 2.1; thus, experimenting with V2.1
allows for a broader comparison with these methods.

In Figure 11, we compare APT with other methods based
on Stable Diffusion V2.1, including DreamBooth [8, 27],
NeTI [2], ViCo [11], OFT [23], and AttnDreamBooth [21].
All images except those generated by our method are di-
rectly taken from AttnDreamBooth [21].

For Stable Diffusion V2.1, we observe that the conver-
gence speed of the overfitting indicator γ differed from that
in SDXL. Specifically, γ converges more rapidly due to the
characteristics of the model. To account for this, we adjust
the calculation of γ by using T/10 instead of T in the ex-
ponential function, where T is the total number of diffusion
steps. All other hyperparameters are kept the same as in our
experiments with SDXL.

We note that in models like Stable Diffusion V2.1, which
have lower generation quality compared to SDXL, preserv-
ing prior knowledge can sometimes negatively affect the
generated images. This is likely due to the limited capacity

of the model to balance incorporating new concepts while
maintaining existing knowledge. Despite this challenge, our
method still outperforms the baselines across various styles
and contexts by effectively preserving prior knowledge.

C. User Study

In this section, we provide a detailed explanation of how
the user study described in Section 4.4 is conducted. Partic-
ipants are presented with the following materials:

• Reference Images: The original images representing the
target concept that the model was trained to learn.

• Prior Images: Images generated by the pretrained model
(SDXL) using the same noise seed and prompts without
any personalization.

• Prompts: The text descriptions used to generate images
from the models.

Based on these materials, participants are asked to eval-
uate the generated images by considering the following as-
pects:

1. Text Alignment: Does the generated image align well
with the given text prompt?

2. Identity Preservation: Is the generated image similar to
the reference images?

3. Prior Similarity: Is the generated image similar to the
composition of the prior image generated by the pre-
trained model?

Participants are instructed to choose the image that best
met all the criteria. Figure 12 shows the interface presented
to users during the study. The results of the user study are
summarized in Table 1.

D. Future Work

In this section, we discuss potential areas for improvement
and future research directions based on our observations.

D.1. Reducing Memory and Computational Over-
head

Our method requires forwarding both the pretrained model
ϕ and the fine-tuned model θ and comparing their atten-
tion maps and intermediate representations. This process
requires more memory and computations, especially since
attention maps from all layers are considered.

To address this issue, future work could focus on opti-
mizing the computation by selecting only a subset of lay-
ers or resolutions for attention alignment and representa-
tion stabilization. For example, using attention maps and
hidden states from specific layers or resolutions (e.g., only
higher resolutions) that have the most impact on model per-
formance could reduce computational load without signifi-
cantly affecting the results.



D.2. Combining Attention Alignment and Repre-
sentation Stabilization

Attention alignment and representation stabilization are
closely related, as both aim to preserve the model’s internal
structures and prior knowledge. Given their close relation-
ship, there is potential to combine these two components
into a unified regularization term.

By formulating a joint regularization that considers both
the attention maps and the hidden states simultaneously, we
may achieve similar or improved performance with reduced
computational complexity. Exploring this possibility could
lead to a more efficient method that maintains the benefits of
both components while mitigating computational overhead.



Reference SDXL (prior) DreamBooth DreamBooth + p.p. DCO APT (ours)

An illustration of backpack, playing fetch with its owner in a serene meadow at dawn, in vintage poster style

A product overview page of backpack in the magazine, illustrated in a infographic style

A surreal painting of an alarm clock in Magritte style

A photo of alarm clock made out of lego building blocks

A robot toy playing guitar in pop art style

A robot toy surfing giant waves at sunset

Figure 9. Additional Qualitative Comparison. We present four images generated by our method and two images from each of the
baseline methods, including SDXL, DreamBooth [27], DreamBooth with prior preservation loss, and DCO [17]. Our method demonstrates
superior performance in prior preservation, including text alignment, compared to these baselines.



Reference SDXL (prior) DreamBooth DreamBooth + p.p. DCO APT (ours)

A teddy bear as a navy officer, saluting at a naval parade with a crowd cheering, in a pastel drawing style

A teddy bear dressed as a cowboy, riding a white fluffy donkey in the desert

A sneaker sprinting on a running track, painted in impressionist style

A robot wearing sneaker, wandering in the scrap heap

A backpack walking in a bustling marketplace surrounded by vibrant fruits and spices, in pop art style

A backpack collecting nuts in an autumn forest, illusrated in art nouveau style

Figure 10. Additional Qualitative Comparison. We present four images generated by our method and two images from each of the
baseline methods, including SDXL, DreamBooth [27], DreamBooth with prior preservation loss, and DCO [17]. Our method demonstrates
superior performance in prior preservation, including text alignment, compared to these baselines.



Reference DreamBooth NeTI AttnDreamBoothViCo OFT APT (ours)

An oil painting of a V* sloth dressed as a musketeeer in an old French town

A V* doll as a Jedi casting a long shadow in a sunlit, empty desert

A painting of a V* toy floating on the lake under the full moon’s glow in the style of Monet

A V* bear is building a sandcastle on a sunny beach while tiny crabs scuttle around and seagulls fly overhead

Figure 11. Additional Qualitative Comparison on Stable Diffusion V2.1. We compare APT with other methods which are based on
Stable Diffusion V2.1., including DreamBooth [8, 27], NeTI [2], ViCo [11], OFT [23], and AttnDreamBooth [21]. Two images from each
of the baseline methods are collected from AttnDreamBooth [21]. Our method outperforms baselines across various styles and contexts by
effectively preserving prior knowledge.



Reference

Prompt: Oil painting of backpack in Seattle during a snowy full moon night

SDXL (prior)

Please choose your favorite image among the following three generated images.
When selecting an image, refer to the criteria below:

• Which image aligns well with the given text prompt?
• The top-left image is an example from the training data. which image is more similar to the reference?
• The top-right image is generated by general-purpose image generation model. Which image is more similar to 

the composition of the prior image?

Figure 12. User Study Example. This shows the interface presented to users during the study.
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