A. Dataset Details

We evaluate our method on six benchmark datasets:
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Multi-MNIST dataset [38], a multi-task variant of
MNIST dataset where the input features are composed
of two digit pictures in the left and right position, re-
spectively. Following MT-CRL [14], we randomly shuffle
the label pairs and split the training and testing set such
that every label co-occurrence in the training set will no
longer appear in the testing set. The tasks are to predict
the left digits and right digits. We use a 3-layer CNN as
the encoder, and one linear layer as per-task predictor. We
choose classification accuracy as the evaluation metric for
both tasks.

CelebA dataset [25], which contains 202, 599 face im-
ages, each of resolution 178 x 218, with 40 binary at-
tributes. We consider four classification tasks, including
gender, smiling, age and attractiveness. The testing data
is evenly sampled across different combinations of task
labels to construct covariate shift between training and
testing set. We use ResNet-18 as the encoder, and one
linear layer as per-task predictor. We choose classifica-
tion accuracy as the evaluation metric for the four tasks.
Taskonomy dataset [45], a MTL benchmark dataset of
indoor scene images from various buildings. We consider
three tasks, including semantic segmentation, scene clas-
sification and object classification. Following MT-CRL
[14], we select images from non-overlapping 48 and 6
buildings as the training and testing set. We use ResNet-
50 as the encoder, one linear layer as per-task predic-
tor for classification tasks and a 15-layer CNN with up-
sampling blocks for semantic segmentation. We choose
classification accuracy as the evaluation metric for scene
and objective classification, and cross-entropy loss as the
evaluation metric for semantic segmentation.

MetaShift dataset [22], a large-scale dataset for evaluat-
ing distribution shifts composed of 12, 868 sets of natural
images across 410 classes. Following the authors’ con-
struction, we consider two tasks: 10-class animal clas-
sification and scene classification. On training data, the
cats and dogs classes are spuriously correlated with ‘in-
door/outdoor’ scene, while on the testing data, the task la-
bels are evenly distributed across different combinations
of animal and scene classes. We use ResNet-18 as the
encoder, and one linear layer as per-task predictor. We
choose classification accuracy as the evaluation metric for
both tasks.

NYU-V2 dataset [35], which consists of 1449 RGB-D in-
door scene images. We We consider two tasks, including
semantic segmentation and depth estimation. On train-
ing data, the foreground objects are spuriously correlated
with shallower depths, while on the testing data, the ob-
jects are evenly distributed across different depths. We
choose mean IoU and relative error as evaluation metrics
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for semantic segmentation and depth estimation, respec-
tively.

CityScape dataset [7], which consists of 3475 street-view
images. We consider two tasks, including semantic seg-
mentation and depth estimation. On training data, the
foreground objects are spuriously correlated with shal-
lower depths, while on the testing data, the objects are
evenly distributed across different depths. We choose
mean IoU and relative error as evaluation metrics for se-
mantic segmentation and depth estimation, respectively.

. Additional Results

Results on CityScape dataset are shown in Tab. 11. Our
method shows better preformance over baselines on both
datasets, validating the effectiveness of our method.

C. Proof of Lemma 1

Proof. Let pyi i == P(Y' = y', Y7 = y7) be the joint
probability of task labels, we have
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where aéj and o/ij remains constant before and after resam-
pling since the random sampling does not alter the corre-
sponding labels for task b. Since E{yi’yj} Dyi yi = 1, based
on the proportionality, we have
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Since p’ = p1o + p11 and p? = p11 + po1, based on Eq. (3)
we have
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where & = T and & = T Eq. (4) indicates

that the expectations of Y and Y/ remains linearly propor-
tional before and after resampling. Accordingly, we have
the correlation coefficient between Y* and Y7 as
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where the simplification is due to E [(Y?)?] = p’ and
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Task (CityScape) STL SubSel MT-CRL Meta-learning Ours
Segmentation (mean IoU, 1) +2.1% +3.7% +4.2% +4.6% +6.4%
Depth (relative error, J.) +2.6% +2.6% +2.3% +3.0% +5.2%

Table 11. Experimental results on CityScape datasets.

D. Proof of Theorem 1

We have the change in correlation coefficients before and
after resampling as
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Since pyiyi,pyriy’; > 0, WLOG, consider down-

sampling on class 1 w.r.t. Y such that pi+pt < 1and

p7 +p’ < 1suchthat pyr; yr; > pyiys, we have Eq. (5)
as
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where the last equality is due to Eq.
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can further write Eq. (5) as
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Furthermore, when Y* 1l Y7, it is easy to see that
E[Y'Y] - E[Y|E[Y7] = E[YYE[Y/] — E[Y|E[Y/] = 0,
and the correlation coefficient remains zero before and af-
ter resampling. When Y? = Y7/, we have E[Y'Y7] —
E[YYE[Y’] = p' — (p*)?, and the correlation coefficient
remains 1 before and after resampling. O

E. Computational Cost

We include the training time of different methods on NYU-
V2 dataset in Tab. 12. Our method leads to a relatively

Method Meta-learning MT-CRL  SubSel Ours
Time 1.33 1.45 1.37 1.13

Table 12. The training time of different methods relative to vanilla
MTL.

smaller increase in computational cost since we only fine-
tune per-task perdictors, validating the scalability to large-
scale datasets.
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