
Appendix Contents

A. Sharpness-aware Optimization 1

B. Synthetic data generation 1

C. Efficiency of AdMiT 2
C.1. Parameter Efficiency 2
C.2. Computational Efficiency 2

D. Additional results 3
D.1. Details on different PET methods 3

E. Semantic Segmentation 4
E.1. Datasets . 4
E.2. Experimental Setup 4
E.3. Results . 4

F. Implementation details 4

G. Details of dataset corruptions 5

H. Theoretical Insights 5
H.1. Maximum Mean Discrepancy as distribution

similarity metric 5
H.2. w-convergence bound 8
H.3. Loss bound 9

H.3.1. Assumptions 9

A. Sharpness-aware Optimization
In order to properly finetune the new module θ(t) with the
pseudo-label entropy minimization, we seek to make the
model insensitive to large gradients by encouraging the
model to converge to a flat area of the entropy loss sur-
face, since a flat minimum leads to good generalization and
robustness to large gradients [37, 38]:

min
λ
LSA(t)({x(t)i }

B
i=1;λ), (A)

where LSA(t) ≜ max
∥ϵ∥2≤ρ

L(t)({x(t)i }
B
i=1;λ+ ϵ) (B)

in which L(t) is defined in (5) in the main paper. In this con-
text, the inner optimization aims to discover a perturbation
ϵ of the module parameter θ(t) within a Euclidean ball of
radius ρ that maximizes entropy. The degree of sharpness
is measured by the maximum change in the Euclidean ball
neighbourhood Nρ(λ). This bi-level problem incentivizes
the optimization process to locate flat minima. Following
SAM [37], we can approximately solve the inner optimiza-
tion via a first-order Taylor expansion:

ϵ∗(λ) ≜ argmax
∥ϵ∥2≤ρ

L(t)({x(t)i }
B
i=1;λ+ ϵ)

≈ argmax
∥ϵ∥2≤ρ

L(t)({x(t)i }
B
i=1;λ) + ϵ⊺∇λL(t)({x(t)i }

B
i=1;λ)

= argmax
∥ϵ∥2≤ρ

ϵ⊺∇λL(t)({x(t)i }
B
i=1;λ)

Let v = ∇λL(t)({x(t)i }Bi=1;λ). Hölder’s inequality implies
that ϵ⊤v ≤ ∥ϵ∥p∥v∥q ≤ ρ∥v∥q (1/p+ 1/q = 1). For p =
q = 2, the linear function achieves that bound ϵ∗(λ)⊺v =

ρ∥v∥2, where ϵ∗(λ) = ρ · sgn(v) · |v|
∥v∥2

.

By substituting ϵ∗(λ) back into Eqn. 7 and differentiating
both sides, the final gradient approximation is:

∇λLSA(t) ≈ ∇λL(t)({x(t)i }
B
i=1;λ)|λ+ϵ∗(λ). (C)

B. Synthetic data generation
The procedure is outlined in Alg. A. In the first two steps,
synthetic data points z1, . . . , zM are selected independently
of the private dataset, relying solely on the database size N .
In the main paper, we use q ∼ N (0, 1). Steps 3 and 4 involve
constructing the linear subspace HM of H spanned by the
feature maps of these synthetic points and computing a finite
basis for this subspace. The private data is then accessed
to calculate the empirical KME µ̂X (step 5), which is sub-
sequently projected onto the subspaceHM and represented
using the precomputed basis (step 6-7). The algorithm en-
sures that the number of synthetic data pointsM increases to
infinity as N approaches infinity (step 1), guaranteeing that
Algorithm 1 yields a consistent estimator of the true KME

Algorithm A Synthetic Data Subspace of the RKHS

Require: Dataset D = {x1, . . . , xN} ⊂ X , kernel k on X ,
number of synthetic data points M

Ensure: Weighted synthetic dataset (representing an esti-
mate of µX in the RKHSH of k)

1: Initialize z1, . . . , zM deterministically or randomly from
some distribution q on X

2: HM ← Span({k(z1, ·), . . . , k(zM , ·)}) ⊆ H
3: b1, . . . , bF form an orthonormal basis ofHM (obtained

using Gram-Schmidt process)
4: µ̂X ← 1

N

∑N
n=1 k(xn, ·), empirical KME of X inH

5: µ̄X ←
∑F

f=1⟨bf , µ̂X⟩bf =
∑F

f=1 αfbf , projection of
µ̂X ontoHM

6: Re-express µ̄X ←
∑F

f=1 βfbf =
∑M

m=1 wmk(zm, ·)
in terms of k(zm, ·)

7: return (z1, w1), . . . , (zM , wM)

µX , provided that the synthetic data points are sampled from
a distribution with sufficiently large support.

Lemma B.1. ([44], Lemma 10) Let X be a compact metric
space and k : X × X → R a continuous kernel on X .
Suppose that the synthetic data points z1, z2, . . . are sampled
i.i.d. from a probability distribution q on X . If the support
supp(X) of X is included in the support of q, then

∥µ̄X − µ̂X∥H
p−→ 0 as N →∞. (D)

Proof Sketch. Let ϵ > 0. Since k is continuous on the com-
pact space X × X , it is uniformly continuous. Therefore,
there exists δ > 0 such that

|k(x, x′)−k(y, y′)| < ϵ2 whenever ∥x−y∥+∥x′−y′∥ < δ.

The compactness of X implies it is totally bounded; thus,
supp(X) can be covered by finitely many balls B1, . . . , BK

of radius δ/2. Since supp(X) ⊆ supp(q) and each q(Bk) >
0, with high probability, eachBk contains at least one sample
point zm as M →∞.

For each xn, select zm(n) within distance δ (possible due
to the coverage). Then,

∥µ̂X − µ̄X∥H ≤
1

N

N∑
n=1

∥∥k(xn, ·)− k(zm(n), ·)
∥∥
H

=
1

N

N∑
n=1

(
k(xn, xn)− 2k(xn, zm(n)) + k(zm(n), zm(n))

)1/2
< ϵ.

The last inequality follows from the uniform continuity of
k and the choice of δ. Therefore, as N → ∞, we have
∥µ̂X − µ̄X∥H

p−→ 0.

C. Efficiency of AdMiT
C.1. Parameter Efficiency

Table A. Number of parameters for different models’ scales and
their corresponding PET module size. ViT-T/S/B/L stands for
"Tiny, Small, Base, Large", corresponding to different pretrained
ViT sizes. The bolded number is the size of the PET modules we
applied in our main paper experiments.

ViT-T ViT-S ViT-B ViT-L
Full model 5,543,716 21,704,164 85,875,556 303,404,132
Adapter 58,564 116,932 233,668 417,984
LoRA 93,028 185,956 371,812 888,932
VPT 37,732 75,364 150,628 299,108
Header 19,300 38,500 76,900 102,500

Table B. Computational cost. We evaluate the computational cost
and adaptation accuracy of multi-source adaptation for the baseline
methods compared to AdMiT on ViT-B/16, using a batch size of
128 and LoRA PET modules (as detailed in the main paper), under
both static (S) and dynamic (D) adaptation settings.

Tuning Method Avg. Tuned Params GFLOPs Image Classification Avg. Acc.(BS=128)
(PET module: LoRA) During Adaptation (M) (Avg.) ImageNet-C (S) Digits (S) CIFAR-100 (D)

Full - 85.87 17.58 61.9 84.1 45.3

Multi

π-tuning 0.25 18.24 62.4 85.8 64.5
SESoM 1.16 18.32 62.6 86.0 60.5

CONTRAST 0.25 19.21 63.1 86.1 72.5
Model soup 0.23 22.14 53.4 69.7 57.2

AdMiT 0.23 17.62 63.7 86.8 73.3
AdMiT-ZeroShot 0 17.62 59.6 82.2 59.1

Table C. Latency from KME matching. We evaluate the adapta-
tion speed on ViT-B/16 backbone for Static adaptation on ImageNet-
C among different PET methods, to demonstrate the latency brought
by KME matching. The inference speed is defined by images per
second (imgs/sec). All results are the average of 5 runs.

Method GFLOPs Adaptation speed (img/sec) Slowdown Percentage (%)
(Avg across BS) BS=1 BS=32 BS=128 BS=1 BS=32 BS=128

Full fine-tuning 17.58 123.4 305.3 308.2 - - -
LoRA 17.58 95.7 291.3 283.1 - - -

LoRA-AdMiT 17.62 94.5 289.5 282.6 1.26 0.62 0.18
Adapter 17.81 104.2 285.6 296.3 - - -

Adapter-AdMiT 17.85 102.5 285.1 295.9 1.63 0.18 0.13
VPT 18.32 117.3 248.3 251.4 - - -

VPT-AdMiT 18.38 116.6 247.5 250.7 0.60 0.32 0.28

Parameter-efficient tuning (PET) methods align naturally
with model ensemble techniques[7], particularly in terms
of parameter efficiency. In contrast to other models where
an ensemble of N models results in N times more module
parameters, the additional module parameters introduced by
the module integration in Alg. 1 is only of the size of one
PET module. This represents less than 0.4% of a pretrained
ViT-base model (≈ 86M, w.r.t. Table. A).

C.2. Computational Efficiency
In Table B, Table C, and Table D, we present a comprehen-
sive comparison of inference speeds and adaptation perfor-
mance across various benchmarks. As shown in Table D, we

Table D. Edge device performance evaluation: Adaptation per-
formance and inference speed comparison on Raspberry Pi 5 using
Digit-5 dataset (N = 4) and ImageNet-C (N = 14), with the
same experiment setting as the Figure 2 of the main paper. Existing
PET methods exhibit slower adaptation speed than full fine-tuning
despite tuning fewer parameters, as they require extra gradient prop-
agation through the PET modules. Different source-target matching
approaches further introduce varying computational overhead.

Tuning method Num of Adaptation Speed Avg. Acc. (BS=128)
PET module: LoRA Tuned Prams (M) (img/100 second) Digit-5 ImageNet-C

Full model 85.87 42 83.5 61.4
π-tuning 0.25 34 83.2 62.1
SESoM 1.16 25 84.1 62.3

CONTRAST 0.25 37 84.4 62.8
AdMiT 0.23 40 85.3 63.5

AdMiT-ZeroShot 0 145 81.5 58.2

evaluate the computational efficiency of different methods
on edge devices (Raspberry Pi 5) using Digit-5 (N = 4) and
ImageNet-C (N = 14) datasets.

The results reveal that existing PET methods exhibit
slower adaptation speeds than full fine-tuning despite tuning
fewer parameters, as they require extra gradient propagation
through the PET modules. Our method, AdMiT, demon-
strates (Table C) superior computational efficiency during
deployment with only a minimal slowdown (less than 2%)
compared to standard PET methods due to the empirical
KME calculation for module matching.

Notably, AdMiT achieves the highest accuracy on both
benchmarks (85.3% on Digit-5 and 63.5% on ImageNet-
C) while maintaining competitive adaptation speed (40
img/100 second). For scenarios where fine-tuning is not fea-
sible, AdMiT-ZeroShot enables remarkably efficient adap-
tation through direct weighted combination of stored mod-
ules, achieving 81.5% and 58.2% accuracy on Digit-5 and
ImageNet-C respectively, while offering the fastest inference
speed (145 img/100 second) with zero tunable parameters.

Unlike existing methods that require extra tuning param-
eters or routing network optimization, AdMiT’s matching
and weight assignment rely solely on empirical KME calcu-
lations, making our method more computationally efficient
during deployment while achieving superior adaptation per-
formance.

D. Additional results
As shown in table. A, we use LoRA in the main paper as
PET modules. We provide the results for other PET modules
in this sections.

D.1. Details on different PET methods
Visual-Prompt Tuning (VPT). With a pre-trained Trans-
former (ViT) model as our starting point, we introduce a
set of p continuous embeddings in the input space, each of
dimension d, referred to as "prompts." During fine-tuning,
only the prompts specific to the task are updated, while the

Table E. Results on Digits, same setup as for Fig 2.We train the
source modules using 4 digits datasets to perform adaptation on the
remaining dataset. All the results are the average of 5 runs. Best
performance is bolded, and second-best performance is underlined.
(M = N = 4).

PET Module Source Method MM MT UP SV SY Avg

LoRA

Single GT-Tuning 70.4 99.6 93.1 90.5 97.2 90.2

Multi

π-tuning-PL 61.3 98.2 89.1 86.2 94.6 85.9
SESoM-PL 62.1 98.3 88.6 87.1 94.5 86.1
Model soup 52.3 83.2 71.5 66.4 75.2 69.7

AdMiT 63.2 98.9 89.3 86.5 96.2 86.8

Adapter

Single GT-Tuning 71.3 99.8 94.1 89.9 97.0 90.4

Multi

π-tuning-PL 62.0 97.5 88.8 86.0 94.5 85.8
SESoM-PL 61.2 97.5 89.4 85.3 94.7 85.6
Model soup 53.3 83.2 70.0 65.1 74.9 69.3

AdMiT 63.9 97.8 88.9 85.0 94.4 86.0

VPT

Single GT-Tuning 71.6 99.7 92.5 92.6 97.9 90.9

Multi

π-tuning-PL 63.5 98.8 88.6 85.4 96.1 86.5
SESoM-PL 64.2 98.3 88.3 88.7 93.8 86.7
Model soup 51.8 82.5 71.9 66.4 75.4 69.6

AdMiT 65.7 99.4 89.9 88.5 97.2 88.1

Transformer backbone remains frozen. We applied VPT-
Shallow[21] as follows:

VPT-Shallow. Prompts are inserted into the first Trans-
former layer only. Each prompt token is a learnable d−
dimensional vector. A module, which is a collection of
p (which is the prompt length) prompts is denoted as
P = {v ∈ Rd|k ∈ N, 1 ≤ k ≤ p}, the shallow-prompted
ViT is:

[x1,Z1,E1] = L1([x0,P,E0]) (E)
[xi,Zi,Ei] = Li([xi−1,Zi−1,Ei−1]), i = 2, · · · , l (F)
y = Head(xl), (G)

where Zi ∈ Rp×d represents the features computed by the
i-th Transformer layer, and [xi,Zi,Ei] ∈ R(1+p+P)×d (P
is the number of patches that a 2D image input is divided
into). The colors above indicate learnable and frozen param-
eters. For ViTs, xi is invariant to the location of prompts
since they are inserted after positional encoding. The overall
parameter count for Adapters in an l-layer Transformer can
be calculated as |θ| = p× d.

Adapter. In the conventional configuration, a trans-
former model incorporates two Adapters per layer [51]. Each
Adapter layer is composed of 2× k× d parameters, account-
ing for both the down and up-projection matrices. Here, k
represents the input dimension size, while d refers to the
bottleneck dimension of the Adapter. The overall param-
eter count for Adapters in an l-layer Transformer can be
calculated as |θ| = 2× l × 2× k × d.

Results for different PET modules. Following the
setup in main paper, we replace LoRA with Adapters,VPTs
as the PET module, and demonstrate the stationary distri-
bution adaptation results in Table. E. In can be concluded
that our method, AdMiT, retains good performance across
different PET modules.

E. Semantic Segmentation
AdMiT is not limited to image classification tasks and can be
seamlessly extended to tasks like semantic segmentation. In
this setting, we assume access to a collection of pre-trained
PET modules {θj}Nj=1, where each module is fine-tuned on
a distinct source distribution for pixel-wise classification.
Specifically, each module outputs per-pixel probabilities for
K classes, formulated as fθj : RH×W → RH×W×K . To
adapt AdMiT for semantic segmentation, the entropy term
in Eqn. 5 of the main paper is updated as follows:

L(t)
w (w) = −ED(t)

T

H∑
h=1

W∑
w=1

K∑
c=1

ŷ
(t)
hwc log(ŷ

(t)
hwc) (H)

Here, ŷ(t)hwc represents the weighted probability output
corresponding to class c for the pixel at location (h,w) at
time-step t. The rest of the framework remains unchanged,
ensuring consistency across tasks.

E.1. Datasets
Our experiments involve the following datasets:
• Cityscapes: The Cityscapes dataset [19] provides large-
scale, densely annotated pixel-level data for 30 classes,
grouped into 8 categories: flat surfaces, humans, vehicles,
constructions, objects, nature, sky, and void. Simulated vari-
ants of this dataset include fog and rain conditions [52, 53].
• ACDC: The Adverse Conditions Dataset (ACDC) [20]
includes pixel-level annotations for images captured under
adverse conditions such as fog, nighttime, rain, and snow.
The class structure aligns with the 19 semantic labels used
in the Cityscapes evaluation, excluding the void class.

E.2. Experimental Setup
For all experiments, we use HRViT-b1 [54] as the segmenta-
tion model. We evaluate performance on 19 semantic labels,
excluding the void label.

We consider a static target distribution setting for evalua-
tion. Specifically, we train three source PET modules using
the clean, fog, and rain splits of the Cityscapes dataset.
After training, these modules are tested on the respective
weather condition splits of the ACDC dataset. Using AdMiT,
we dynamically integrate the source modules for each target
condition and compare the results with baseline methods.

E.3. Results
Results on Cityscapes to ACDC: Table F shows the per-
formance of AdMiT and baseline methods on ACDC test
data under different weather conditions (static target distri-
butions). The source modules are trained on Cityscapes and
its simulated noisy variants. AdMiT significantly outper-
forms baseline adaptation methods, with results reported in

Table F. Semantic segmentation results.

Source Method Fog Rain Snow Night Avg

Single
TENT-Best 25.4 21.7 19.7 13.5 20.0

BECoTTA-Best 26.3 22.4 21.3 14.5 21.1
SAR-Best 25.8 22.2 20.1 15.5 20.9

Multi

π-tuning-PL 28.3 23.0 24.2 17.4 23.2
SESoM-PL 29.2 25.3 25.4 18.2 24.5

CONTRAST 32.4 29.4 25.2 18.7 26.4
Model soup 25.4 25.5 21.4 14.7 21.8

AdMiT 32.5 29.9 25.4 19.1 26.7
AdMiT-ZeroShot 27.5 22.3 19.9 14.7 21.1

terms of % mIoU, highlighting its effectiveness in leveraging
multi-source knowledge for target adaptation.

F. Implementation details
We perform all the experiment on a single A100 GPU. We
use ViT-Base-16 [55] model in all our experiments. For all
experiments without extra clarification, we use a target batch
size of |T | = 128, as used by TENT [30]. The experimental
setup for tuning the integrated module is listed as in Table. G
summarizing the optimization configurations we used. Im-
plementation details for each tuning method apply to both
source and target distributions.

In this problem setting, we propose to adaptively com-
bine multiple pre-trained parameter-efficient tuning (PET)
modules during deployment through suitable combination
weights, which are determined based on a limited number
of target samples. Consider the scenario where we have
a collection of N pre-trained PET modules, denoted as
{θj}Nj=1, which are fine-tuned on distinct source distribu-
tions. During deployment, target data arrives in an online
fashion as a sequence of batches {x(1)i }Bi=1 → {x

(2)
i }Bi=1 →

. . . {x(t)i }Bi=1 → . . ., where t represents the time-stamp and
B is the number of samples in each target batch. The target
distribution at time-stamp t is denoted as D(t)

T , implying
{x(t)i }Bi=1 ∼ D

(t)
T .

Motivated by the multi-source adaptation framework, we
model the target distribution at each time-stamp t as a lin-
ear combination of source distributions, with combination
weights denoted as {w(t)

j }Nj=1. Using these weights, AdMiT
integrates the pre-trained PET modules to form an adaptive
module for the current target batch. Thus, the inference
model for test batch t can be expressed as f (t)T = fθ(t),
where θ(t) =

∑N
j=1 w

(t)
j θj is the dynamically integrated

PET module for time-stamp t.
We implement the baselines as follows:

• TENT. TENT [30] adapts transformers by modifying
only the LayerNorm statistics during test-time adaptation
while keeping the PET modules and backbone weights
unchanged. It minimizes the entropy of predictions for
target batches, encouraging confident predictions. The
LayerNorm parameters (mean and variance) are updated

Table G. Hyperparameters for tuning AdMiT

Full, Adapter, LoRA VPT
Optimizer AdamW SGD
Optimizer momentum N/A 0.9
base_lr search range {0.001, 0.0001, 0.0005, 0.005} {50., 25., 10., 5., 2.5, 1.,0.5, 0.25, 0.1, 0.05}
Weight decay range {0.01, 0.001, 0.0001, 0.0}
LR schedule cosine decay
Warm up epochs 10
Total epochs 100

iteratively using gradients computed from the entropy loss.
Key hyperparameters include the learning rate for updat-
ing LayerNorm statistics (1× 10−4) and the batch size for
target adaptation (B = 64).

• BECoTTA. BECoTTA(-M) [33] integrates multiple PET
modules using a MoDE (Mixture of Domain Experts)
module, which applies a Top-K routing strategy to se-
lect the K = 2 most relevant PET modules based on
input features. During pretraining, BECoTTA initializes
with D = 3 proxy domains (source domain, darkness,
and brightness) and trains the MoDE module alongside
a domain discriminator and a synergy loss, freezing the
backbone. In deployment, PET modules are activated for
online adaptation, with entropy-based filtering used to re-
fine pseudo-labels. The primary hyperparameters include
the number of proxy domains (D = 3) and the Top-K
selection parameter (K = 2).

• SAR. SAR [38] adapts transformers by restricting up-
dates to LayerNorm statistics during test-time adaptation
while freezing PET modules and backbone weights. Un-
like TENT, SAR selectively filters high-entropy (low-
confidence) samples, focusing on reliable predictions.
Sharpness-aware optimization is applied to smooth the
entropy loss, improving robustness against noisy target dis-
tributions. The key hyperparameters include the entropy
threshold for filtering (E0 = 0.4× ln(K), where K is the
number of classes) and the sharpness radius (ρ = 0.05)
for optimization.

• π-Tuning. π-Tuning [16] combines knowledge from mul-
tiple pre-trained PET modules by interpolating their out-
puts based on task similarity. Task embeddings are com-
puted using the Fisher Information Matrix (FIM), with sim-
ilarity calculated as cosine similarity between the embed-
dings of target and source tasks. The top k PET modules
are selected for interpolation, and weights are optimized
via pseudo-label entropy minimization. Key hyperparame-
ters include the number of selected PET modules (k = 3),
learning rate for fine-tuning (1× 10−4).

• SESoM. SESoM [12] integrates the outputs of multiple
source models through the utilization of an additional
attention-based routing network. Within our experimental
framework, each PET module operates as a source-specific

unit. The logits derived from these modules are trans-
mitted to an attention-based routing network tasked with
computing sample-specific weights. The routing network
undergoes fine-tuning via pseudo-label entropy minimiza-
tion, employing few-shot pseudo-labeled target data while
maintaining the PET modules and backbone architecture in
a fixed state. Key hyperparameters comprise the learning
rate for the attention module (3×10−4) and a dropout rate
set at 0.1. An attentionn-based routing network of approxi-
mately d×d′x+d′x×d′+v×d′l+d′l×d′+4d′ = 0.85M
size (as defined in [12]) is employed to derive the attention
weights.

• CONTRAST. CONTRAST [15] adapts to evolving tar-
get distributions by dynamically combining pre-trained
source models and selectively updating the most relevant
model. For ViT-based architectures, CONTRAST com-
putes weights for PET modules based on LayerNorm statis-
tics or feature embeddings and updates the PET module
with the highest weight for each target batch. Key hy-
perparameters include learning rate for weight updates
(1× 10−4), and test batch size (B = 128).

• Model Soup. Model Soup [46] improves performance by
averaging the weights of multiple fine-tuned PET modules
without additional inference cost. We adapt Model Soup
by sequentially adding PET modules to the soup using
the Greedy Soup strategy, retaining only modules that
improve validation accuracy. Hyperparameters include
learning rates ({10−4, 10−5}) and using 10% of training
data for validation.

G. Details of dataset corruptions

We summarize these corruptions types by example in Fig. A.
The order of these corruptions is the same as the order in
Table. 2 and Figure. 3.

H. Theoretical Insights

H.1. Maximum Mean Discrepancy as distribution
similarity metric

The objective of module selection in AdMiT is to quan-
tify the similarity between the source distribution DS and

Published as a conference paper at ICLR 2021

APPENDIX

This supplement summarizes the image corruptions used in our experiments, highlights a qualitative example of
instance-wise adaptation for semantic segmentation, and visualizes feature shifts across more layers.

A ROBUSTNESS TO CORRUPTIONS

In Section 4.1 we evaluate methods on a common image corruptions benchmark. Table 2 reports errors on the
most severe level of corruption, level 5, and Figure 5 reports errors for each corruption type averaged across
each of the levels 1–5. We summarize these corruptions types by example in Figure 8.

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 8: Examples of each corruption type in the image corruptions benchmark. While synthetic,
this set of corruptions aims to represent natural factors of variation like noise, blur, weather, and
digital imaging effects. This figure is reproduced from Hendrycks & Dietterich (2019).

B SOURCE-FREE ADAPTATION FOR SEMANTIC SEGMENTATION

Figure 9 shows a qualitative result on source-free adaptation for semantic segmentation (pixel-wise classification)
with simulation-to-real (sim-to-real) shift.

For this sim-to-real condition, the source data is simulated while the target data is real. Our source data is GTA
Richter et al. (2017), a visually-sophisticated video game set in an urban environment, and our target data is
Cityscapes Cordts et al. (2016), an urban autonomous driving dataset. The supervised model is HRnet-W18, a
fully convolutional network Shelhamer et al. (2017) in the high-resolution network family Wang et al. (2020).
For this qualitative example, we run tent on a single image for multiple iterations, because an image is in effect
a batch of pixels. This demonstrates adaptation to a target instance, without any further access to the target
domain through usage of multiple images from the target distribution.

13

Figure A. Examples of each corruption type in the image corruptions benchmark. While synthetic, this set of corruptions aims to represent
natural factors of variation like noise, blur, weather, and digital imaging effects.

the target distribution DT without access to the raw data.
Rather than comparing moments of different orders, such
as Ex∼D(x

n), we adopt a more comprehensive metric,
Ex∼D(f(x)), to universally characterize the properties of
distributions.

The discrepancy between the expected function values
across two distributions,DT andDS , is captured by the Max-
imum Mean Discrepancy (MMD). Mathematically, MMD is
defined in a reproducing kernel Hilbert space (RKHS)H as:

MMD(F ,DT ,DS) = sup
f∈F

(Ex∼DS (f(x))−Ex∼DT (f(x))) .

Without loss of generality, f is assumed to reside within a
unit ball , i.e., ||f ||H ≤ 1. The RKHS is structured using
an orthogonal basis derived from the decomposition of a
symmetric and positive semi-definite kernel function k(x,y).
In the main paper, we employ a Gaussian radial basis kernel
k(x,y) = exp(−||x− y||2).

A symmetric and positive semi-definite kernel function
k(x,y) can be decomposed [40] into a set of eigenval-
ues {λi}∞i=1 and corresponding orthogonal eigenfunctions
{ψi(·)}∞i=1:

k(x,y) =

∞∑
i=1

λiψi(x)ψi(y).

These eigenfunctions form an orthogonal basis {
√
λiψi(·)}

used to construct the Hilbert spaceH. Any function f within
this space can be expressed either as a linear combination of
these basis functions:

f(·) =
∞∑
i=1

fi
√
λiψi(·),

or represented as an infinite-dimensional vector inH: f =
(f1, f2, . . .)

⊤
H. When one parameter of the kernel function is

fixed to x, it behaves like a function with a single variable
or an infinite vector:

k(x, ·) =
∞∑
i=1

λiψi(x)ψi(·) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .)

⊤
H.

This leads to the following computation for the inner product
of these two functions, illustrating the reproducing property
of RKHS:

⟨f, k(x, ·)⟩H = (f1, f2, . . .)H · (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .)

⊤
H

=

∞∑
i=1

fi
√
λiψi(x) = f(x),

which effectively captures the essence of the reproducing
property within the RKHS framework.

Furthermore, for a given distribution D, we introduce the
kernel mean embedding (KME), defined as:

µD = Ex∼D[k(x, ·)].

This allows the expressions within the Maximum Mean Dis-
crepancy (MMD) to be rewritten in terms of inner products
in the RKHS:

Ex∼D(f(x)) = Ex∼D⟨f, k(x, ·)⟩H = ⟨f,Ex∼Dk(x, ·)⟩H
= ⟨f, µD⟩H.

In the context of MMD, we assess the supremum with

these inner products:

MMD(F ,DT ,DS) = sup
||f ||H≤1

(Ex∼DS (f(x))−Ex∼DT (f(x)))

= sup
||f ||H≤1

⟨µDT , f⟩H − ⟨µDS , f⟩H

= sup
||f ||H≤1

⟨µDT − µDS , f⟩H ≤ sup
||f ||H≤1

||µDT − µDS ||H · ||f ||H

= ||µDT − µDS ||H.

We work with several source datasets Sj = {(xi, yi)}
|Sj |
i=1 ∼

DS j , j ∈ [N] in the pretraining stage, and an unlabeled
target batch T = {(xi, ·)}|T |

i=1 ∼ DT in the deployment
stage. The empirical KME at these phases can be estimated
as:

µ̂(T) =
1

|T |
∑
xn∈T

k(xn, ·), µ̂(Sj) =
1

|Sj |
∑

xn∈Sj

k(xn, ·).

(I)

We can also compute the squared Maximum Mean Dis-
crepancy (MMD2) by expanding the definition:

MMD2(DT ,DS j) = ||µDT − µDSj
||2H

= ||µDT ||2H − 2⟨µDT , µDSj
⟩H + ||µDSj

||2H
= Ex,y∼DT k(x,y)− 2Ex∼DT ,y∼DSj

k(x,y)

+Ex,y∼DSj
k(x,y),

which results in the following empirical estimate:

M̂MD
2
(T, Sj)

=
1

|T |2
∑

xn,xm∈T

k(xn, xm)− 2

|T ||Sj |
∑

xn∈T,xm∈Sj

k(xn, xm)

+
1

|Sj |2
∑

xn,xm∈Sj

k(xn, xm). (J)

We provide proofs for the following properties:
• If the kernel k(·, ·) is universal, the mapping from D to
µ(D) via KME is injective.

• MMD(DT ,DS) = 0 if and only if DT = DS .
These properties enable the measurement of distribution
similarity through MMD and KME.

Theorem H.1. If the kernel k is universal, then the mean
map µ : PX → H is injective.

Proof. We will use a proof by contradiction to establish the
theorem.

Assume that µ : PX → H is not injective. Then, there
exist two different probability measures p and q such that
µ[p] = µ[q], i.e.,

µ[p] = µ[q].

The mean map µ[p] is represented as:

µ[p](·) =
∫
X

k(x, ·) dp(x),

and similarly,

µ[q](·) =
∫
X

k(x, ·) dq(x).

For any f ∈ H, we have:

⟨f, µ[p]⟩H = ⟨f, µ[q]⟩H.

The inner product ⟨f, µ[p]⟩H can be written as:

⟨f, µ[p]⟩H = EX∼p[f(X)],

and similarly,

⟨f, µ[q]⟩H = EX∼q[f(X)].

Since µ[p] = µ[q], it follows that:

EX∼p[f(X)] = EX∼q[f(X)] ∀f ∈ H.

By the universality of the kernel k, the RKHSH is dense
in C(X). This means that the above equality holds for all
continuous functions f ∈ C(X).

By the uniqueness theorem for measures, if two measures
p and q agree on all continuous functions, then p = q. This
contradicts our assumption that p and q are different.

Therefore, the assumption that µ is not injective must be
false, and hence µ is injective.

Theorem H.2. Let F be a unit ball in a universal RKHS
H, defined on the compact metric space X , with associated
continuous kernel k(·, ·). Then MMD {F , p, q} = 0 if and
only if p = q.

Proof. First, it is clear that p = q implies MMD {F , p, q}
is zero. We now prove the converse.

By the universality of H, for any given ϵ > 0 and f ∈
C(X), there exists a g ∈ H such that

∥f − g∥∞ ≤ ϵ.

We next make the expansion

|Exf(x)− Eyf(y)| ≤ |Exf(x)− Exg(x)|+
|Exg(x)− Eyg(y)|+ |Eyg(y)− Eyf(y)|.

The first and third terms satisfy

|Exf(x)− Exg(x)| ≤ Ex|f(x)− g(x)| ≤ ϵ.

Next, write

Exg(x)− Eyg(y) = ⟨g, µp − µq⟩H = 0,

since MMD {F , p, q} = 0 implies µp = µq . Hence

|Exf(x)− Eyf(y)| ≤ 2ϵ

for all f ∈ C(X) and ϵ > 0, which implies p = q.

H.2. w-convergence bound
For a bounded kernel 0 ≤ k(·, ·) ≤ K, the biased empirical
estimator of MMD is

MMDb[F , X, Y] = sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi)

)
,

where X,Y are random variables from distribution p, q, and
{xi}mi=1, {yi}ni=1 are samples drawn from these two distri-
butions.

We want to show that the absolute difference between
MMD(F , p, q) and MMDb(F , X, Y) is close to its expected
value, independent of the distributions p and q. To this end,
we prove three intermediate results, which we then combine.
The first result we need is an upper bound on the absolute dif-
ference between MMD(F , p, q) and MMDb(F , X, Y). We
have

|MMD(F , p, q)−MMDb(F , X, Y)|
= | sup

f∈F
(Ex(f)− Ey(f))

− sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi)

)
|

≤ sup
f∈F

∣∣∣∣∣Ex(f)− Ey(f)−
1

m

m∑
i=1

f(xi) +
1

n

n∑
i=1

f(yi)

∣∣∣∣∣︸ ︷︷ ︸
∆(p,q,X,Y)

(K)

Then, we provide an upper bound on the difference be-
tween ∆(p, q,X, Y) and its expectation. Changing either of
xi or yi in ∆(p, q,X, Y) results in changes in magnitude of
at most 2K1/2/m or 2K1/2/n, respectively. We can then
apply McDiarmid’s theorem [56], given a denominator in
the exponent of

m

(
2K1/2

m

)2

+ n

(
2K1/2

n

)2

= 4K

(
1

m
+

1

n

)
=

4K(m+ n)

mn
,

to obtain

Pr
X,Y

(∆(p, q,X, Y)− EX,Y [∆(p, q,X, Y)] > ϵ) ≤

exp

(
− ϵ2mn

2K(m+ n)

)
. (L)

Next, we exploit symmetrisation, following [57], to upper
bound the expectation of ∆(p, q,X, Y). Denoting by X ′

an i.i.d sample of size m drawn independently of X (and
likewise for Y ′), we have

EX,Y [∆(p, q,X, Y)] ≤

EX,Y sup
f∈F

∣∣∣∣∣Ex(f)−
1

m

m∑
i=1

f(xi)− Ey(f) +
1

n

n∑
i=1

f(yi)

∣∣∣∣∣
= EX,Y sup

f∈F

∣∣EX′

(
1

m

m∑
i=1

f(x′i)

)
− 1

m

m∑
i=1

f(xi)

− Ey(f) +
1

n

n∑
i=1

f(yi)
∣∣

= EX,Y sup
f∈F

∣∣∣∣∣EX′

(
1

m

m∑
i=1

f(x′i)−
1

m

m∑
i=1

f(xi)

)

+
1

n

n∑
i=1

f(yi)− Ey(f)

∣∣∣∣∣
≤ EX,Y,X′,Y ′ sup

f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(x′i)−
1

m

m∑
i=1

f(xi)

∣∣∣∣∣
+ EY,Y ′ sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(y′i)− Ey(f)

∣∣∣∣∣
= EX,Y,X′,Y ′ sup

f∈F

∣∣∣∣∣ 1m
m∑
i=1

σi (f(x
′
i)− f(xi))

∣∣∣∣∣+
EY,Y ′,σ′ sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

σ′
i (f(y

′
i)− f(yi))

∣∣∣∣∣
≤ EX,X′,σ sup

f∈F

∣∣∣∣∣ 1m
m∑
i=1

σi (f(x
′
i)− f(xi))

∣∣∣∣∣+
EY,Y ′,σ′ sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

σ′
i (f(y

′
i)− f(yi))

∣∣∣∣∣
≤ 2 [Rm(F , p) +Rn(F , q)]

≤ 2

[(
K

m

)1/2

+

(
K

n

)1/2
]

(M)

The first step applies Jensen’s inequality to simplify the
expression. Next, the triangle inequality is used to separate
the terms, followed by substituting the Rademacher aver-
age to connect the empirical and expected values. Finally,
the Rademacher averages are bounded as defined in Defini-
tion 30 of [18]. Combining Eqn. L with the bounded term

EX,Y [∆(p, q,X, Y)] derived from Eqn. M, we can obtain

Pr
X,Y

(
∆(p, q,X, Y)− 2

[(
K

m

)1/2

+

(
K

n

)1/2
]
> ϵ

)
≤

exp

(
− ϵ2mn

2K(m+ n)

)
. (N)

Combining Eqn. N with Theorem 7 in [18], leads to the
following Corollary:

Corollary H.3. If p = q, then with probability at least
1− δ, the (biased) empirical MMD (obtained by drawing m
samples from p and n samples from q) is bounded by:

1

2
MMDb(p̂, q̂) <

√
K

m
+

√
K

n
+

√
K(m+ n) log 1

δ

2mn

for any arbitrarily small δ > 0.

Setting p = DT , q =
∑N

j=1 wjDS j ,
∑N

j=1 wj = 1 leads
to:

1

2

∥∥∥∥∥∥µ̂(T)−
N∑
j=1

wj µ̂(Sj)

∥∥∥∥∥∥
H

<

√
K

m
+

√
K

n

+

√
K(m+ n) log 1

δ

2mn
.

The above result upper-bounds the error of estimating
empirical target KME with weighted average of empirical
source KME in the optimization in 4 of the main paper. Note
that n is the number of samples from q, i.e. the number
of samples from the involved source datasets, thus as the
number of modules N increases, n also increases.

Similarly, we can derive the following estimation error
bound for KME and empirical KME:

Corollary H.4. ([58], Theorem 1) With probability at least
1− δ we have

∥µ(p)− µ̂(p)∥H ≤ 2

√
K

n
+

√
2 log 1

δ

n
.

Proof. Proof can be found in [58], section B.1.

H.3. Loss bound
H.3.1. Assumptions
Suppose we are given a pretrained frozen backbone trans-
former model f , and there are N source domains in the
upload phase. We build PET modules on their own domains
and upload them to the module store for future users. Each

source domain has a corresponding dataset {Sj}Nj=1 , re-
flecting the distribution DS j . The source datasets will be
inaccessible after the pretraining stage.

We also assume that a global optimal rule function g :
X → Y exists for the domain adaptation problem,

∀j ∈ [N],∀(x, y) ∈ Sj , g(x) = y.

We assume that all sources are competent, and the source
datasets are sufficient to solve their domains. Formally speak-
ing, the modules θ̂j can help the pretrained model to reach a
small error rate ϵ > 0 with respect to a certain loss function
L (upper-bounded by |L|) on their domain distribution DS j

when applied with the pretrained backbone model f :

∀j ∈ [N],L(DS j , fθ̂j) = Ex∼DSj
[L(fθ̂j (x), y)] ≤ ϵ. (O)

In this context, the loss function L : Y × Y → R+ can
be either a regression loss or classification loss. Since the
domains {Sj}Nj=1 are equipped with low-error pre-trained
modules, they are referred to as solved domains.

In the deployment phase, a new user wants the model to
solve the current domain with only unlabeled testing data
x ∼ DT . Thus the target is to learn a good model f̂t which
minimizes L(DT , f̂t), utilizing the information contained in
pre-trained modules {θ̂j}Nj=1.

Theorem H.5 (Zero-shot adaptation loss bound). Assume
that the assumptions in corollary H.3 hold. The module θj
from each source dataset satisfies ∀j ∈ [N],L(DS j , fθ̂j) =

Ex∼DSj
[L(fθ̂j (x), y)] ≤ ϵ. Assume that the loss function

L(fθ̂j (x), f(x)) ∈ Hk. The empirical MMD between distri-

bution mixture
∑N

j=1 wjDS j and current distribution DT
can be estimated from

MMDb =

∥∥∥∥∥∥µ̂(T)−
N∑
j=1

wj µ̂(Sj)

∥∥∥∥∥∥
H

Then the finite sample loss satisfies:

L(DT , g, f∑wj θ̂j
) =

∑
xi∼DT

[
L(f∑wj θ̂j

(xi), g(xi))
]

≤ ϵ+O(

√
1

m
+

√
1

n
)

Proof. By the reproducing property, the loss function can be
written as:

L(f∑wj θ̂j
, g(x)) = L∑

wj θ̂j
(x) = ⟨L∑

wj θ̂j
, k(x, ·)⟩.

We then can represent the error of each model in the form of
KME. For the current mixture:

Ex∼DT [L∑
wj θ̂j

(x)] = ⟨L∑
wj θ̂j

, µDT ⟩

The empirical loss can also be represented by:∣∣∣〈L∑
wj θ̂j

, µ̂(T)
〉∣∣∣ ≤∣∣∣∣∣∣

〈
L∑

wj θ̂j
, µ̂(T)

〉
−

〈
L∑

wj θ̂j
,
∑
j

wj µ̂(Sj)

〉∣∣∣∣∣∣︸ ︷︷ ︸
(A)

+

∣∣∣∣∣∣
〈
L∑

wj θ̂j
,
∑
j

wj µ̂(Sj)

〉∣∣∣∣∣∣︸ ︷︷ ︸
(B)

(P)

We then bound (A) and (B) separately.
By the convergence rate for empirical MMD,

(A) =

∣∣∣∣∣∣⟨L∑
wj θ̂j

, µ̂(T)−
N∑
j=1

wj µ̂(Sj)⟩

∣∣∣∣∣∣
≤ ∥L∑

wj θ̂j
∥∥µ̂(T)−

N∑
j=1

wj µ̂(Sj)∥

≤ O(m,n) (Q)

(B) ≤
∣∣∣⟨L∑

wj θ̂j
,
∑

wjµDSj
⟩
∣∣∣

+

∣∣∣∣∣∣⟨L∑
wj θ̂j

,
∑
j

wj µ̂(Sj)−
∑

wjµDSj
⟩

∣∣∣∣∣∣
≤

N∑
j=1

wj

∣∣∣⟨Lθ̂j
, µDSj

⟩
∣∣∣

+ |L| ∥
∑
j

wj µ̂(Sj)−
∑

wjµDSj
∥

≤ ϵ+ 2

√
K

m
+

√
2 log 1

δ

m
(R)

The last steps of the estimation (A) and (B) can be ob-
tained directly from corollary H.4 and corollary H.3, and
this completes the proof.

Theorem H.5 estimates the loss in directly applying the
integrated module θ(t) to the target domain without any
tuning on the target dataset, i.e. the zero-shot performance.
It ensures a good initialization of the tuning in Sec. 3.2,
leading to a good adaptation performance.

	Sharpness-aware Optimization
	Synthetic data generation
	Efficiency of AdMiT
	Parameter Efficiency
	Computational Efficiency

	Additional results
	Details on different PET methods

	Semantic Segmentation
	Datasets
	Experimental Setup
	Results

	Implementation details
	Details of dataset corruptions
	Theoretical Insights
	Maximum Mean Discrepancy as distribution similarity metric
	w-convergence bound
	Loss bound
	Assumptions

