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6. Video Results

In our offline webpage, we provide additional video results
generated from X-Dyna. Please unzip the supplementary
files and open the HTML file on your browser.

Comparison of Different Appearance Reference
Module Designs: To demonstrate the effectiveness of our
proposed Dynamics-Adapter, we provide visual compar-
isons with IP-Adapter and ReferenceNet. Please refer to
the Different Architecture Designs section on the offline
page for details.

Comparison to Previous Works: To evaluate the
performance of X-Dyna in generating dynamic textures
for human image animation, we present visual compar-
isons with previous state-of-the-art methods, including the
ReferenceNet-based approach from [4] and the SVD-based
method from [56]. Details can be found in the Comparison
to Previous Works section.

Ablation Study: To highlight the contribution of Har-
monic Data Fusion Training to our pipeline, we present a
visualized ablation study. Please refer to the Effectiveness
of Mix data training section of the attached page.

7. Quantitative Evaluation of Cross-Driving
Reenactment

In this section, we present quantitative evaluations for cross-
driving video generation. We generated 200 videos for X-
Dyna and each baseline method using various in-the-wild
driving motions and reference images. The overall qual-
ity of cross-driving generation is assessed using DTFVD
and FID metrics, comparing the distribution of the gen-
erated videos with the training videos. To evaluate the
control accuracy of facial expressions, we crop the face
area of both generated and driving videos and calculate
their mean difference of face landmarks by MediaPipe [28].
The numerical results are summarized in Tab. 5, where X-
Dyna demonstrates superior face expression control accu-
racy (Face-Exp) and dynamics (DTFVD), and comparable
perceptual quality (FID).

8. Details of User Study

In this section, we provide a comprehensive user study
for qualitative comparison between X-Dyna and previous
works [4, 17, 51, 56]. We generate 50 different human ani-
mation results from all baseline models and X-Dyna, where
the results are anonymized and shuffled. On the online plat-
form Prolific , we ask 100 users to rate these methods from
O(worst) - 5(best).

Table 5. Quantitative comparisons of X-Dyna with recent
state-of-the-art (SOTA) methods on cross-driving human an-
imation. A downward-pointing arrow indicates that lower values
are better. DTFVD and FID are used to evaluate the overall qual-
ity of generated videos. Face-Exp denotes the absolute error of
facial expressions between generated videos and driving videos.

Method DTFVD| FID| Face-Exp |
MagicAnimate [51] 6.708 250.75 0.134
Animate-Anyone [17] 6.820 253.29 0.123
MagicPose [4] 7.062 244.25 0.121
MimicMotion [56] 6.823 25891 0.109
X-Dyna 5.923 246.16 0.105

Criteria for Judgment: Since our paper focuses on the
dynamics of texture generation and motion control with hu-
man reference, the criteria for evaluation are (1) dynam-
ics quality of background nature (BG-Dyn), (2) dynamics
quality of human foreground (FG-Dyn), (3) appearance and
identity preservation ability (ID).

Results and Statistical Analysis: The result is pre-
sented in Tab. 3 of the main paper. In addition, we perform
a one-way analysis of variance (ANOVA) test on the rat-
ings. ANOVA tests whether the means of multiple groups
of data (methods in this case) are significantly different. For
each metric, we compare the ratings across all five methods.
Specifically, F-statistic measures the ratio of variance be-
tween group averaged values to the variance within groups.
A higher F-statistic indicates greater variability between
group-averaged values relative to within-group variability.
P-value tests the null hypothesis that all group means are
equal. A small p-value (typically < 0.05) indicates signifi-
cant differences between groups. As reported in Tab. 6, all
metrics (FG-Dyn, BG-Dyn, ID, Overall) have p-values <
0.05, indicating statistically significant differences between
methods. The F-statistic for each metric shows the relative
strength of these differences. X-Dyna consistently achieves
the highest averaged ratings across all metrics (as seen in
Tab. 3 of the main paper), and the differences are statisti-
cally significant.

Metric F-statistic  p-value
FG-Dyn 7.495 0.000007
BG-Dyn 5.327 0.000331
ID 4.685 0.001016
Overall 5.617 0.000199

Table 6. ANOVA Test Results for Ratings from the User Study.



9. More Details on Prior Appearance Refer-
ence Control Designs

ReferenceNet was initially introduced by Animate-
Anyone [17]. It adopts the same architecture as the Ap-
pearance Encoder in MagicAnimate [51] and the Appear-
ance Control Model in MagicPose [4]. Building upon
prior advancements in dense reference image condition-
ing, such as the manipulation of self-attention layers in the
UNet demonstrated by MasaCtrl [3] and Reference-only
ControlNet [54], ReferenceNet enhances identity and back-
ground preservation, significantly improving single-frame
fidelity. The naive self-attention calculation in the trans-
former blocks of the diffusion UNet can be represented as:
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However, ReferenceNet introduces a trainable duplicate of
the base UNet, which computes conditional features from
the reference image I for each frame I;. Unlike Con-
trolNet, which integrates conditions additively in a resid-
ual manner, ReferenceNet injects the features derived from
IR, directly into the spatial self-attention layers of the UNet
blocks. This is achieved by concatenating the reference fea-
tures with the original UNet’s self-attention hidden states.
The process can be expressed as:
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where [-] denotes concatenation operation and z;, 2, de-
notes the self-attention hidden states from I;, I z. This self-
attention mechanism strictly queries and preserves the in-
formation from the reference image in the denoising pro-
cess, including human identity and background.
IP-Adapter [52] is composed of two key components: an
image encoder that extracts features from the image prompt
and adapted modules with decoupled cross-attention to inte-
grate these features into the LDM UNet. A pretrained CLIP
image encoder is employed to extract features from the ref-
erence image /g.

To effectively decompose the extracted global im-
age embedding, a lightweight trainable projection net-
work—comprising a linear layer and Layer Normalization
is utilized. This network projects the global image embed-
ding into a sequence of features, ensuring that the dimen-
sionality of the projected image features matches the dimen-
sionality of the text features used in the UNet.

The integration of image features into the UNet is per-
formed through adapted modules with decoupled cross-
attention. In the original LDM, text features from the

CLIP text encoder are incorporated into the UNet via cross-
attention layers. In this setup, given the query features z,.
derived from [Ig, the hidden states of the UNet for each
frame I;, and the text features z;, the output of the cross-
attention mechanism is defined as:
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Then, another cross-attention layer for each original
layer in the UNet is added to inject image features. Given
the image features z,, the output of this cross-attention is
computed as follows:
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The same query Qi/ is shared between the image cross-
attention and the text cross-attention mechanisms. As a
result, only two additional trainable parameters, WK%

and WVI/?, are introduced as linear layers for each cross-
attention module. The output of the image cross-attention
is then combined with the output of the text cross-attention
through a simple addition operation. Accordingly, the final
formulation of the decoupled cross-attention is denoted as:

Out! = A} + \A”, (11)

where ) is an adjustable parameter. When A = 0, the model
is the same as a frozen pre-trained LDM.

Stable Video Diffusion (SVD) [1] is a diffusion-based
video generation model that extends the latent diffusion
framework originally designed for 2D image synthesis to
produce high-resolution, temporally consistent videos from
text and image inputs. SVD UNet introduces two types of
temporal layers: 3D convolution layers and temporal at-
tention layers, and temporal layers are also incorporated
into the VAE decoder. For training, the DDPM [13] noise
scheduler used in Stable Diffusion [36] is replaced by the
EDM [21] scheduler, alongside EDM’s sampling method.
Unlike traditional DDPM models that rely on discrete
timesteps ¢ for denoising, EDM uses a continuous noise
scale o, By incorporating o; as input to the model, EDM
enables more flexible and effective sampling, utilizing con-
tinuous noise strengths instead of discrete timesteps during
the denoising process. This end-to-end training paradigm
enhances temporal consistency in video generation. How-
ever, SVD faces challenges when dealing with cross-driving



cases. The reference image is concatenated with the noisy
latent and directly input to the UNet, leading the model
to deform the reference image into the first frame of the
video rather than encoding the reference image and learn-
ing its semantic information implicitly, as achieved by Ref-
erenceNet [17], IP-Adapter [52], and Dynamics-Adapter.
While fine-tuning the UNet, as in MimicMotion [56], is
a potential solution, it struggles to generalize to out-of-
domain identities beyond the training data, as shown in Fig.
5 of our main paper and the supplementary videos.
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