
Textured Gaussians for Enhanced 3D Scene Appearance Modeling

Appendix

A. Results from Original 3DGS Paper

We show the quantitative results (PSNR / SSIM / LPIPS) of
all 5 datasets reported in the original 3DGS paper [29] and
the performance of our own 3DGS implementation in Table
A.1. Since we used a modified version of 3DGS described
in Gaussian Opacity Fields [68], there are slight differences
in the results. We compare our textured Gaussians model
with our own modified 3DGS implementation (which we
label as 3DGS∗ in the main paper) for a fair comparison,
since our algorithm is built on top of that. However, the
concept of Textured Gaussians could also be easily applied
to the original 3DGS model.

A note on LPIPS. The LPIPS values reported in the orig-
inal 3DGS paper [29] are underestimated, leading to addi-
tional performance discrepancies compared to our method.
This issue was pointed out in [6] and confirmed in private
correspondence with the authors of 3DGS [29]. To avoid
confusion, we underline the underestimated LPIPS values
in Table A.1 and report the correct LPIPS values of our own
implementation.

B. Custom 3DGS Implementation Details

Our custom 3DGS implementation closely follow the mod-
ified 3DGS algorithm described in Gaussian Opacity Fields
[68]. In this section, we describe how each component in
our own implementation of 3DGS differs from the original
3DGS paper [29].
Gaussian Value Calculation. In 3DGS, 3D scenes are
represented with 3D Gaussians, and images are rendered
using differentiable volume splatting. Specifically, 3DGS
explicitly defines 3D Gaussians by their 3D covariance ma-
trix Σi ∈ R3×3 and center µi ∈ R3 (the index i indicating
the ith Gaussian), where the 3D Gaussian function value at
point x ∈ R3 is defined by:

Gi(x) = exp(−1

2
(x− µi)Σ

−1
i (x− µi)) (A.1)

where the covariance matrix Σ = RSS⊤R⊤ is factorized
into the rotation matrix R ∈ R3×3 and the scale matrix
S ∈ R3×3. When rendering the color of a pixel p ∈ R3, 3D
Gaussians are transformed from world coordinates to cam-
era coordinates via a world-to-camera transformation ma-
trix W ∈ R3×3 and projected to the 2D image plane via a
local affine transformation J ∈ R3×3. The transformed 3D
covariance Σ′ can be calculated as:

Σ′ = JWΣW⊤J⊤ (A.2)

The covariance Σ2D of the 2D Gaussian G2D splatted on
the image plane can be approximated as extracting the first
two rows and columns of the transformed 3D covariance,
Σ2D = [Σ′]{1,2},{1,2} ∈ R2×2 using the matrix minor nota-
tion. The alpha value αi used to perform alpha compisting
at the pixel location can then be calculated by:

αi = G2D
i (p) · oi (A.3)

where oi is the opacity of the ith 3D Gaussian.
Instead of approximating 2D Gaussian values by splat-

ting 3D Gaussians, we cast rays from the pixel currently
being rendered and calculate the exact 3D Gaussian value
evaluated at the ray-Gaussian intersection point. This fo-
rumlation fits nicely with our Textured Gaussians algorithm
since ray-Gaussian intersection calculation is also required
from texture UV-mapping. The alpha value αi used for al-
pha blending at pixel p is therefore defined by:

αi = Gi(x) · oi (A.4)

where x is the ray-Gaussian intersection point and Gi is the
ith 3D Gaussian.
Adaptive Density Control (ADC). The optimization of
3DGS starts from a sparse structure-from-motion (SfM)
point cloud and progressively densifies Gaussians either
through cloning or splitting. In the original 3DGS, this den-
sification process is guided by a score that is defined by the
magnitude of the view/screen-space positional gradient dL

dµ′

of the Gaussian:∥∥∥∥ dL

dµ′

∥∥∥∥ =

∥∥∥∥∥∥
∑
j

dL

dpj
· dpj

dµ′

∥∥∥∥∥∥ (A.5)

where µ′ is the center of the projected Gaussian and pj are
the pixels the Gaussian contributed to. If this score is larger
than a predfined threshold τ , the Gaussian will be cloned or
splitted.

As pointed out in Gaussian Opacity Fields [68], this
score is not effective in identifying overly blurred areas
for Gaussian densification, and the authors proposed an al-
ternative sum-of-magnitudes score to replace the original
magnitude-of-sums:

∑
j

∥∥∥∥ dL

dpj
· dpj

dµ′

∥∥∥∥ (A.6)

We use this revised densification score to perform adap-
tive density control throughout optimization.

Method Blender [37] Mip-NeRF 360 [37] DTU [27] Tanks and Temples [30] Deep Blending [20]

Kerbl et al. [29] 33.32 / ——– / ——– 27.21 / 0.815 / 0.214 ——– / ——– / ——– 23.14 / 0.841 / 0.183 29.41 / 0.903 / 0.243
3DGS∗ 33.09 / 0.967 / 0.044 27.28 / 0.832 / 0.187 33.54 / 0.970 / 0.055 24.18 / 0.854 / 0.175 28.04 / 0.894 / 0.271

Table A.1. Quantitative performance comparison (PSNR ↑ / SSIM ↑ / LPIPS ↓) between our own 3DGS implementation (labelled as
3DGS* in the main paper) and the original 3DGS paper [29]. The under-estimated LPIPS values from the original 3DGS paper are
underlined.

Learning Rates and other Hyperparameters. We use all
default learning rates and hyperparameters in the original
3DGS implementation [29]. Please refer to their released
code for the specific values. For each Textured Gaussians
experiment and ablation study, we use the same texture map
resolution and set the texture map learning rate to be 0.001
for all datasets and do not require per-dataset tuning for tex-
ture map parameters and learning rates.

C. Additional Details on Implementation, Op-
timization, and Dataset Preparation

Implementation Details. We implement our algorithm us-
ing PyTorch and custom CUDA kernels that perform fast
ray-Gaussian intersection calculation, UV mapping, and
texture lookup. All experiments are run on clusters of
Nvidia H100 GPUs.

To avoid integer overflows during UV mapping, we only
intersect Gaussians within ±3σ along the two major axes
and map the 2D texture map to the ±3σ range (m = 3). The
color of intersection points outside of this range is simply
assigned as black, that is ctex

i (u, v) = 0. We found that this
implementation greatly improves numerical stability, espe-
cially when viewing Gaussians from grazing angles. This
also has very little effect on the final performance since the
opacity of the Gaussian outside of the ±3σ range is negli-
gible (less than 0.01). We also found that dynamically ad-
justing the intersection plane based on the two longest axes
of the ellipsoid leads to empirically better performance.
Optimization Details. We set the learning rate of the tex-
ture maps to 0.001 and initialize the RGB colors of the tex-
ture map to a low value (25

255) since the optimized spherical
harmonic coefficients of the first stage should have already
learned to reconstruct the average color of the pixels within
the Gaussian extent, and the texture map should only learn
to reconstruct the residual color in the second stage of opti-
mization. The alpha channel of the texture map is initialized
to 1.

Since our training procedure has two stages (3DGS pre-
traiing and Textured Gaussians optimization), the training
time of our models are roughly two times the training time
of 3DGS. Our custom CUDA kernels that perform ray-
Gaussian intersection and texture lookup adds very little
overhead to the original 3DGS rendering process, hence the

“flower gallery” 161 images “children’s art” 198 images

Figure A.1. Sample training views and number of training im-
ages in our custom-captured datasets. We captured room-level
scenes containing highly-detailed artworks to demonstrate the ef-
fectiveness of our method.

inference time of our Textured Gaussians model is approx-
imately the same as that of 3DGS.
Dataset Preparation Details. We downscale the DTU
dataset to 800 × 600 image resolution following Xu et al.
[63], and conform to the dataset preparation and evaluation
protocols described in Kerbl et al. [29] for the remaining
four datasets (Blender [37], Mip-NeRF 360 [4], Tanks and
Temples [30], and Deep Blending [20]). Following Milden-
hall et al. [37] and Xu et al. [63], we use the alpha channel
of the images to create black and white backgrounds for the
DTU dataset and the Blender dataset, respectively.

For our custom dataset, we capture two room-scale
scenes (“flower gallery” and “children’s art”) at a local
art center. The images from each dataset are captured by
a photographer standing at the center of the room scanning
the whole room in a 360 degrees fashion. The number of
captured images for each scene in shown in Figure A.1.
DTU Dataset Baseline Comparisons Details For
comparisons with Mip-NeRF 360 [4] and Instant-NGP
[39] on the DTU dataset, we run the open-source
code provided by the authors (code for Mip-NeRF
360 and code for Instant-NGP). For Mip-NeRF 360
optimization, we slightly modified the configuration
file multinerf/configs/blender 256.gin,

https://github.com/google-research/multinerf
https://github.com/google-research/multinerf
https://github.com/NVlabs/instant-ngp

which is the default configuration for their Blender
experiments. Specifically, we set parameters
Model.bg intensity range = (0, 0) and
Model.opaque background = False because the
DTU dataset scenes all have black backgrounds. The near
and far clipping planes are set as (2, 6), respectively, based
on the input point cloud and camera positions. The capacity
of this model is more than sufficient because DTU dataset
has both lower image resolution and less training images
than the Blender dataset (one-third to one-fourth of the
training images).

For Instant-NGP optimization, we used the configuration
file instant-ngp/configs/nerf/base.json,
which is the default configuration for all Instant-NGP ex-
periments, including experiments on scene-level datasets.

D. Additional Quantitative Results
NVS with Varying Numbers of Gaussians and Fixed
Amount of Texels. We show the quantitative novel-view
synthesis results of our RGBA Textured Gaussians models
and 3DGS∗ with varying numbers of Gaussians in terms of
PSNR, SSIM, and LPIPS for the 5 test datasets in Table A.3
and Figure A.4. We allocate a fixed amount of texels to
each of our models. Hence, the texture map resolutions of
models with more Gaussians are smaller. Our method con-
sistently outperforms 3DGS∗ in terms of PSNR and LPIPS
when using different numbers of Gaussians, and the perfor-
mance improvement is especially large when using fewer
Gaussians.
NVS with Varying Texture Map Resolution and Fixed
Number of Gaussians. We show quantitative novel-view
synthesis results of our RGBA Textured Gaussians models
with a fixed number of Gaussians and varying texture map
resolutions in terms of PSNR, SSIM, and LPIPS in Figure
A.5. We optimized all models with 1% of the default op-
timized number of Gaussians. As expected, the quantita-
tive performance becomes better as the texture resolution
increases since the detailed appearances are reconstructed
better.
NVS with Varying Number of Gaussians and Fixed Tex-
ture Map Resolution. We show quantitative novel-view
synthesis results of our RGBA Textured Gaussians mod-
els with a fixed texture map resolution and varying number
of Gaussians in terms of PSNR, SSIM, and LPIPS in Fig-
ure A.6. We use a 4 × 4 texture map for all models. As
the number of Gaussians increase, the quantitative perfor-
mances improve since detailed geometry and appearance
are reconstructed better with more, and therefore smaller,
Gaussians.
Ablation on Texture Map Variants. We ablate variants
of our model that use different texture maps, namely alpha-
only, RGB, and RGBA texture maps, and the same number
of Gaussians. Experiments are conducted on all five stan-

Model 3DGS Ours (w/ 4×4 RGBA textures)

Number of Gaussians (M) 2.12 M 2.12 M
Model size (MB) 125.3 MB 261.2 MB
GPU memory (GB) 2.4 4.0
Inference time per frame (s) 0.073 0.123

Table A.2. We report various efficiency metrics of 3DGS and our
Textured Gaussians model. With the same number of Gaussians,
the model size and GPU usage of Textured Gaussians are around
2× that of 3DGS. The inference speed is also slower due to addi-
tional textured map queries.

dard benchmark datasets with the default optimized num-
ber (top row) and 1% of the default optimized number (bot-
tom row) of Gaussians. We report the PSNR/SSIM/LPIPS
values of the novel-view synthesis results. From Table
A.4 and Figure A.7, we see that our model achieves the
best performance with RGBA textures. Interestingly, us-
ing alpha-only textures already outperforms 3DGS∗ and
our RGB textures model despite being one-third the size,
striking a better balance between performance and model
size. This is because alpha-textured Gaussians can repre-
sent complex shapes through spatially varying opacity and
reconstruct high-frequency textures through spatially vary-
ing alpha composition. In contrast, RGB-textured Gaus-
sians are still limited to representing ellipsoids.
Computational Efficiency Analysis. The total training
time of Textured Gaussians is 2× that of 3DGS due to the
two-stage training process. In Table A.2, we report various
efficiency metrics, aggregated over all 26 test scenes, of our
Textured Gaussians vs. 3DGS using the same number of
Gaussians and the setup of Table 1 in the main paper (100%
of the default number of optimized Gaussians and 4 × 4
texture maps).

As for the other texture map variants of Textured Gaus-
sians, the model sizes of using alpha-only, RGB, and RGBA
textures are 1.27×, 1.82×, 2.08× that of 3DGS with the
same number of Gaussians. Note that using alpha-only tex-
tures only imposes slight memory overhead and performs
better than 3DGS, according to Figure 8 in the paper.

E. Additional Qualitative Results
In this section, we show qualitative NVS results and refer
the readers to the project website for novel-view video ren-
derings of selected scenes for each experiment.
NVS with Varying Numbers of Gaussians and Fixed
Amount of Texels. We show novel-view synthesis re-
sults from the 24 test scenes that we used for evaluation
in Figures A.8 to A.12. We show results of 3DGS∗ and our
Textured Gaussians model using the default optimized num-
ber and 1% of the default optimized number of Gaussians.
Our method achieves sharper details than 3DGS∗ in both
cases. The differences between the two methods are espe-

https://textured-gaussians.github.io/

cially clear when using fewer Gaussians, as 3DGS∗ strug-
gles to reconstruct fine-grained textures while our method
achieves decent image quality.

We additionally show novel-view video renderings of
selected scenes optimized using 3DGS∗ and our RGBA
Textued Gaussians model with varying number of Gaus-
sians (continuously varying from 1% to 100% of the default
number of optimized Gaussians) in the project website. We
highly recommend readers to try out the interactive website
and toggle between models optimized with different num-
bers of Gaussians to see how novel-view synthesis quality
improves as the number of Gaussians increases.
NVS with Varying Texture Map Resolution and Fixed
Number of Gaussians. We show qualitative novel-view
synthesis results of our RGBA Textured Gaussians mod-
els with a fixed number of Gaussians and varying texture
map resolutions in Figures A.13 to A.17. Due to space con-
straints, we show results of our Textured Gaussians models
with texture map resolutions T = 2, 5, 20, 40.

As expected, NVS performance improves as the texture
map resolution increases, since detailed appearances can be
reconstructed better with smaller texture feature sizes.
NVS with Varying Number of Gaussians and Fixed Tex-
ture Map Resolution. We show qualitative novel-view
synthesis results of our RGBA Textured Gaussians models
with a fixed texture map resolution and varying numbers
of Gaussians in Figures A.18 to A.22. Due to space con-
straints, we show results of our Textured Gaussians models
1%, 5%, 20%, and 100% of the default number of optimized
Gaussians.

As expected, NVS performance improves as the num-
ber of Gaussians increase since details can be reconstructed
better with more and therefore, smaller, Gaussians.
Ablation on Texture Map Variants. We show novel
view synthesis results of our Textured Gaussians model op-
timized using different texture map variants, namely alpha-
only, RGB, and RGBA textures, in Figures A.23 to A.27.
Here, we show the results of our models and 3DGS∗ with
1% of the default optimized number of Gaussians to maxi-
mize the visual difference between different variants to fully
demonstrate the effectiveness of our method.

From the results, we see that the alpha-textures model
and the RGBA textures model achieve better qualitative per-
formance than the RGB textures model. This is because
alpha-textured Gaussians are able to both reconstruct fine-
grained textures through spatially varying alpha composi-
tion and represent complex shapes through spatially vary-
ing opacity. On the other hand, RGB-textured Gaussians
are still only able to represent ellipsoids. This is clearly
observed in scenes that contain complex geometric struc-
tures, such as the ship scene in the Blender dataset (last row)
and the lego truck in the kitchen scene in the mipNeRF360
dataset (6th row).

We additionally show novel-view video renderings of se-
lected scenes optimized using 3DGS∗ and different variants
(alpha, RGB, and RGBA) of our Textured Gaussians model
in the project website. We highly recommend readers to try
out the interactive website and toggle between models opti-
mized with different texture map variants to see how alpha
and RGB texture maps affect novel-view rendering quality.
Color Component Decompositions. We optimized
our Textured Gaussians model with alpha-only, RGB, and
RGBA textures with the same number of Gaussians and
show the color decomposition of the final rendered color
into the two color components cbase and ctex in Figures A.28
to A.32. Specifically, we show the alpha-modulated and
composited colors of the color components. 3DGS∗ mod-
els optimized with the same number of Gaussians are also
shown for better comparison. We optimize all models with
1% of the default optimized number of Gaussians to maxi-
mize the visual difference between our method and 3DGS∗

to fully demonstrate the effectiveness of our method.
We see from the results of the alpha-only and RGBA tex-

tures model that although the color of cbase comes from spa-
tially constant spherical harmonic coefficients, the alpha-
modulated cbase is able to reconstruct high-frequency tex-
tures due to the spatially varying alpha composition. On
the other hand, cbase in the RGB textures model cannot re-
construct high-frequency textures, and ctex is used to recon-
struct detailed appearance.

We additionally show novel-view video renderings of
the color component decompositions of selected scenes op-
timized using 3DGS∗ and different variants (alpha, RGB,
and RGBA) of our Textured Gaussians model in the project
website. We highly recommend readers to try out the inter-
active website and toggle between models optimized with
different texture map variants to see how the color compo-
nent decompositions differ from one another.
3DGS vs. 2DGS-based implementation. We find that
Textured Gaussians optimization naturally leads to a large
proportion of flat Gaussians, as the distributions of effective
rank are shown Figure A.2. Note that flat 3D Gaussians
have an effective rank of 2 [26]. This observation justifies
our design choice to flatten 3D Gaussians to approximate
2D Gaussians, similar to prior works [16, 68].

We also used various designs to reduce artifacts espe-
cially when rendering flat Gaussians from grazing view-
points. As shown in Figure A.3, intersecting Gaussians only
within the ±3σ range and using SH base colors greatly re-
duce rendering artifacts.

https://textured-gaussians.github.io/
https://textured-gaussians.github.io/
https://textured-gaussians.github.io/
https://textured-gaussians.github.io/

Method Blender [37] Mip-NeRF 360 [37] DTU [27] Tanks and Temples [30] Deep Blending [20]

3DGS* (1%) 26.89 / 0.9160 / 0.1165 22.37 / 0.6293 / 0.4774 30.88 / 0.9320 / 0.1581 19.90 / 0.6736 / 0.4406 23.97 / 0.8167 / 0.4337
Ours (1%) 28.02 / 0.9340 / 0.0847 23.75 / 0.7066 / 0.3367 32.41 / 0.9626 / 0.0696 21.08 / 0.7384 / 0.3114 24.88 / 0.8454 / 0.3550
3DGS* (2%) 28.44 / 0.9320 / 0.0973 23.43 / 0.6816 / 0.4216 31.90 / 0.9478 / 0.1317 21.05 / 0.7199 / 0.3881 25.49 / 0.8459 / 0.3894
Ours (2%) 29.68 / 0.9465 / 0.0716 24.79 / 0.7454 / 0.2945 32.77 / 0.9652 / 0.0621 22.14 / 0.7757 / 0.2726 26.29 / 0.8681 / 0.3186
3DGS* (5%) 30.09 / 0.9491 / 0.0742 24.88 / 0.7450 / 0.3393 32.63 / 0.9593 / 0.0987 22.25 / 0.7720 / 0.3189 26.55 / 0.8642 / 0.3469
Ours (5%) 30.96 / 0.9564 / 0.0571 25.87 / 0.7841 / 0.2492 32.96 / 0.9662 / 0.0584 23.05 / 0.8085 / 0.2339 27.00 / 0.8735 / 0.3039
3DGS* (10%) 31.47 / 0.9590 / 0.0594 25.77 / 0.7796 / 0.2860 32.71 / 0.9627 / 0.0811 22.82 / 0.8020 / 0.2728 27.64 / 0.8853 / 0.3101
Ours (10%) 32.12 / 0.9630 / 0.0488 26.45 / 0.8012 / 0.2298 32.72 / 0.9659 / 0.0583 23.42 / 0.8258 / 0.2123 27.98 / 0.8899 / 0.2803
3DGS* (20%) 32.21 / 0.9637 / 0.0506 26.45 / 0.8057 / 0.2408 32.93 / 0.9651 / 0.0699 23.58 / 0.8305 / 0.2298 27.99 / 0.8908 / 0.2927
Ours (20%) 32.59 / 0.9656 / 0.0453 26.83 / 0.8139 / 0.2138 32.85 / 0.9666 / 0.0584 23.99 / 0.8428 / 0.1940 28.16 / 0.8906 / 0.2784
3DGS* (50%) 32.77 / 0.9664 / 0.0452 27.02 / 0.8250 / 0.2019 33.23 / 0.9683 / 0.0603 23.96 / 0.8479 / 0.1922 28.11 / 0.8939 / 0.2762
Ours (50%) 32.98 / 0.9673 / 0.0434 27.13 / 0.8245 / 0.1973 33.19 / 0.9686 / 0.0594 24.18 / 0.8516 / 0.1801 28.27 / 0.8915 / 0.2738
3DGS* (100%) 33.09 / 0.9671 / 0.0440 27.28 / 0.8318 / 0.1871 33.54 / 0.9697 / 0.0551 24.18 / 0.8541 / 0.1754 28.04 / 0.8940 / 0.2707
Ours (100%) 33.24 / 0.9674 / 0.0428 27.35 / 0.8274 / 0.1858 33.61 / 0.9699 / 0.0556 24.26 / 0.8542 / 0.1684 28.33 / 0.8908 / 0.2699

Table A.3. Quantitaive results on all datasets using varying numbers of Gaussians with a fixed amount of texels. We report the
quantitative NVS performance of our RGBA Textured Gaussians model and 3DGS∗ with the same number of Gaussians on all five test
datasets in terms of PSNR (↑), SSIM (↑), and LPIPS (↓) metrics. Our Textured Gaussians model consistently outperforms 3DGS∗ when
using different numbers of Gaussians.

150

100

50

Number of Gaussians

1.0 2.0 1.0 2.0 Effective rankEffective rank
Naïve 3DGS Our Textured Gaussians

Figure A.2. We analyzed the effective rank distribution [26] of
naı̈ve Gaussian splatting and Textured Gaussians models. Our
Textured Gaussians optimization naturally leads to a large propor-
tion of flat 2D Gaussians (effective rank = 2), while naı̈ve Gaus-
sian splatting leads to more needle-like Gaussian strands (effective
rank ≈ 1). This observation justifies our choice of using the 3DGS
framework to approximate 2D Gaussians.

No intersection clipping No SH base color Full model

Figure A.3. We designed various heuristics to reduce artifacts
caused by rendering flat 2D Gaussians from grazing viewpoints,
including intersection clipping (left) and adding SH base colors
(middle). Our full model achieves the best rendering results.

1% 2% 5% 10% 20% 50%100%

27

28

29

30

31

32

33

PS
N

R

Blender

1% 2% 5% 10% 20% 50%100%

23

24

25

26

27

mipNeRF360

1% 2% 5% 10% 20% 50%100%

31.0

31.5

32.0

32.5

33.0

33.5

DTU

1% 2% 5% 10% 20% 50%100%

24

25

26

27

28

Deep Blending

1% 2% 5% 10% 20% 50%100%

20

21

22

23

24

Tanks and Temples

1% 2% 5% 10% 20% 50%100%

0.92

0.93

0.94

0.95

0.96

SS
IM

1% 2% 5% 10% 20% 50%100%

0.65

0.70

0.75

0.80

1% 2% 5% 10% 20% 50%100%

0.94

0.95

0.96

0.97

1% 2% 5% 10% 20% 50%100%

0.82

0.84

0.86

0.88

1% 2% 5% 10% 20% 50%100%

0.70

0.75

0.80

0.85

1% 2% 5% 10% 20% 50%100%
0.04

0.06

0.08

0.10

0.12

LP
IP

S

1% 2% 5% 10% 20% 50%100%

0.20

0.25

0.30

0.35

0.40

0.45

1% 2% 5% 10% 20% 50%100%

0.06

0.08

0.10

0.12

0.14

0.16

Ours Baseline

1% 2% 5% 10% 20% 50%100%

0.30

0.35

0.40

1% 2% 5% 10% 20% 50%100%

0.20

0.25

0.30

0.35

0.40

0.45

Figure A.4. Quantitaive results on all datasets using varying numbers of Gaussians with a fixed amount of texels. We show the NVS
performance trend of our RGBA Textured Gaussians model and 3DGS∗ as the number of Gaussians increases. Our Textured Gaussians
model greatly outperforms 3DGS∗ with fewer Gaussians, and the performance gap between the two methods decreases as the number of
Gaussians increases.

2 5 10 20 30 40

27.0

27.2

27.4

27.6

27.8

28.0

PS
N

R

Blender

2 5 10 20 30 40

23.0

23.2

23.4

23.6

23.8

Mip-NeRF 360

2 5 10 20 30 40

31.0

31.5

32.0

32.5
DTU

2 5 10 20 30 40

24.2

24.4

24.6

24.8

Deep Blending

2 5 10 20 30 40
20.2

20.4

20.6

20.8

21.0

Tanks and Temples

2 5 10 20 30 40

0.920

0.925

0.930

SS
IM

2 5 10 20 30 40

0.65

0.66

0.67

0.68

0.69

0.70

0.71

2 5 10 20 30 40

0.935

0.940

0.945

0.950

0.955

0.960

2 5 10 20 30 40

0.820

0.825

0.830

0.835

0.840

0.845

2 5 10 20 30 40

0.69

0.70

0.71

0.72

0.73

0.74

2 5 10 20 30 40
0.085

0.090

0.095

0.100

0.105

0.110

LP
IP

S

2 5 10 20 30 40

0.34

0.36

0.38

0.40

0.42

0.44

0.46

2 5 10 20 30 40

Texture Map Resolution

0.08

0.10

0.12

0.14

Ours

2 5 10 20 30 40

0.36

0.38

0.40

0.42

2 5 10 20 30 40

0.32

0.34

0.36

0.38

0.40

0.42

Figure A.5. Quantitative results of ablation study on varying texture resolutions with a fixed number of Gaussians. As the
texture map resolution increases, novel-view synthesis quality improves as detailed appearances are reconstructed better. However, the
performance drops slightly when the texture map resolution is too high, likely due to overfitting.

1% 2% 5% 10% 20% 50%100%
27

28

29

30

31

32

33

PS
N

R

Blender

1% 2% 5% 10% 20% 50%100%
23

24

25

26

27

Mip-NeRF 360

1% 2% 5% 10% 20% 50%100%

31.5

32.0

32.5

33.0

33.5
DTU

1% 2% 5% 10% 20% 50%100%

25

26

27

28

Deep Blending

1% 2% 5% 10% 20% 50%100%

21

22

23

24

Tanks and Temples

1% 2% 5% 10% 20% 50%100%
0.92

0.93

0.94

0.95

0.96

SS
IM

1% 2% 5% 10% 20% 50%100%
0.65

0.70

0.75

0.80

1% 2% 5% 10% 20% 50%100%

0.945

0.950

0.955

0.960

0.965

0.970

1% 2% 5% 10% 20% 50%100%

0.84

0.86

0.88

1% 2% 5% 10% 20% 50%100%

0.700

0.725

0.750

0.775

0.800

0.825

0.850

1% 2% 5% 10% 20% 50%100%

0.06

0.08

0.10

LP
IP

S

1% 2% 5% 10% 20% 50%100%

0.20

0.25

0.30

0.35

0.40

0.45

1% 2% 5% 10% 20% 50%100%

Percentage of Gaussians

0.06

0.08

0.10

0.12

0.14

Ours

1% 2% 5% 10% 20% 50%100%

0.275

0.300

0.325

0.350

0.375

0.400

1% 2% 5% 10% 20% 50%100%

0.20

0.25

0.30

0.35

0.40

Figure A.6. Quantitative results of ablation study on varying number of Gaussians and with a fixed texture map resolution. As the
number of Gaussians increase, novel-view synthesis performance improves since detailed appearance and geometry can be reconstructed
better using smaller and more Gaussians.

Method Blender [37] Mip-NeRF 360 [37] DTU [27] Tanks and Temples [30] Deep Blending [20]

3DGS* 33.09 / 0.9671 / 0.0440 27.28 / 0.8318 / 0.1871 33.54 / 0.9697 / 0.0551 24.18 / 0.8541 / 0.1754 28.04 / 0.8940 / 0.2707
Alpha-only 33.22 / 0.9672 / 0.0433 27.32 / 0.8259 / 0.1874 33.51 / 0.9692 / 0.0554 28.30 / 0.8888 / 0.2720 24.27 / 0.8532 / 0.1695
RGB 33.20 / 0.9673 / 0.0431 27.30 / 0.8268 / 0.1873 33.58 / 0.9697 / 0.0561 28.21 / 0.8895 / 0.2722 24.24 / 0.8536 / 0.1695
RGBA 33.24 / 0.9674 / 0.0429 27.35 / 0.8274 / 0.1859 33.60 / 0.9699 / 0.0559 28.34 / 0.8910 / 0.2699 24.26 / 0.8542 / 0.1685
3DGS* (1%) 26.89 / 0.9160 / 0.1165 22.37 / 0.6293 / 0.4774 30.88 / 0.9320 / 0.1581 19.90 / 0.6736 / 0.4406 23.97 / 0.8167 / 0.4337
Alpha-only (1%) 27.64 / 0.9304 / 0.0905 23.69 / 0.7012 / 0.3494 32.31 / 0.9604 / 0.0759 24.68 / 0.8411 / 0.3620 20.93 / 0.7335 / 0.3226
RGB (1%) 27.60 / 0.9279 / 0.0923 23.50 / 0.6971 / 0.3558 32.52 / 0.9612 / 0.0765 24.64 / 0.8403 / 0.3682 20.73 / 0.7236 / 0.3352
RGBA (1%) 28.11 / 0.9343 / 0.0849 23.73 / 0.7064 / 0.3365 32.43 / 0.9627 / 0.0694 24.83 / 0.8454 / 0.3552 21.08 / 0.7395 / 0.3107

Table A.4. Quantitative results of ablation study on texture map variants. We ablate different variants of our model that use alpha,
RGB, and RGBA texture maps with the default optimized number and 1% of the default optimized number of Gaussians. We report the
NVS performance of different models in terms of PSNR (↑), SSIM (↑), and LPIPS (↓) metrics. Models with RGBA textures achieve the
best results due to the maximum expressivity of individual Gaussians. Interestingly, models with alpha-only textures achieve better results
than RGB textures models while using only one-third of the model size.

0.0

0.1

Blender

0.00

0.05

Mip-NeRF 360

0.00

0.05
DTU

0.0

0.1
Tanks & Temples

0.00

0.25
Deep Blending

0

1

0

1

0

1

0

1

0.0

0.5

 P
SN

R
1%

 G
S

100%
 G

S

alpha-only RGB RGBA

Figure A.7. Quantitative results of ablation study on texture map variants. We optimized our Textured Guasians model with different
texture map variants (alpha-only, RGB, RGBA). We show the difference in PSNR values compared to the 3DGS∗ baseline for better
visual comparison. We observe that the alpha-only textures models generally achieve better performance than RGB textures models.
This is because alpha textures are capable of representing complex appearance and shapes due to spatially varying alpha modulation and
composition. On the other hand, RGB-textured Gaussians are still only capable of representing ellipsoids. The full RGBA textures models
achieve the best results since the RGBA-textured Gaussians are most expressive.

Ours 3DGS* (1%) Ours (1%)3DGS*

Figure A.8. Qualitative NVS results on the Blender dataset with varying numbers of Gaussians and a fixed amount of texels. Our
RGBA Textured Gaussians model achieves better NVS quality compared to 3DGS∗ when using the same number of Gaussians. The visual
difference is especially clear with fewer Gaussians.

Ours 3DGS* (1%) Ours (1%)3DGS*

Figure A.9. Qualitative NVS results on the Mip-NeRF 360 dataset with varying numbers of Gaussians and a fixed amount of texels.
Our RGBA Textured Gaussians model achieves better NVS quality compared to 3DGS∗ when using the same number of Gaussians. The
visual difference is especially clear with fewer Gaussians.

Ours 3DGS* (1%) Ours (1%)3DGS*

Figure A.10. Qualitative NVS results on the DTU dataset with varying numbers of Gaussians and a fixed amount of texels. Our
RGBA Textured Gaussians model achieves better NVS quality compared to 3DGS∗ when using the same number of Gaussians. The visual
difference is especially clear with fewer Gaussians.

Ours 3DGS* (1%) Ours (1%)3DGS*

Figure A.11. Qualitative NVS results on the Tanks and Temples dataset with varying numbers of Gaussians and a fixed amount of
texels. Our RGBA Textured Gaussians model achieves better NVS quality compared to 3DGS∗ when using the same number of Gaussians.
The visual difference is especially clear with fewer Gaussians.

Ours 3DGS* (1%) Ours (1%)3DGS*

Figure A.12. Qualitative NVS results on the Deep Blending dataset with varying numbers of Gaussians and a fixed amount of texels.
Our RGBA Textured Gaussians model achieves better NVS quality compared to 3DGS∗ when using the same number of Gaussians. The
visual difference is especially clear with fewer Gaussians.

Ours RGBA (𝒯 = 5) Ours RGBA (𝒯 = 10) Ours RGBA (𝒯 = 40)Ours RGBA (𝒯 = 2)

Figure A.13. Qualitative NVS results on the Blender dataset with vayring texture map resolutions and a fixed number of Gaus-
sians. Given a fixed number of Gaussians, novel-view synthesis performance improves as the texture map resolution increases. Detailed
appearance can be reconstructed better with higher-resolution texture maps, or smaller texel feature sizes.

Ours RGBA (𝒯 = 5) Ours RGBA (𝒯 = 10) Ours RGBA (𝒯 = 40)Ours RGBA (𝒯 = 2)

Figure A.14. Qualitative NVS results on the Mip-NeRF 360 dataset with vayring texture map resolutions and a fixed number of
Gaussians. Given a fixed number of Gaussians, novel-view synthesis performance improves as the texture map resolution increases.
Detailed appearance can be reconstructed better with higher-resolution texture maps, or smaller texel feature sizes.

Ours RGBA (𝒯 = 5) Ours RGBA (𝒯 = 10) Ours RGBA (𝒯 = 40)Ours RGBA (𝒯 = 2)

Figure A.15. Qualitative NVS results on the DTU dataset with vayring texture map resolutions and a fixed number of Gaussians.
Given a fixed number of Gaussians, novel-view synthesis performance improves as the texture map resolution increases. Detailed appear-
ance can be reconstructed better with higher-resolution texture maps, or smaller texel feature sizes.

Ours RGBA (𝒯 = 5) Ours RGBA (𝒯 = 10) Ours RGBA (𝒯 = 40)Ours RGBA (𝒯 = 2)

Figure A.16. Qualitative NVS results on the Tanks and Temples dataset with vayring texture map resolutions and a fixed number
of Gaussians. Given a fixed number of Gaussians, novel-view synthesis performance improves as the texture map resolution increases.
Detailed appearance can be reconstructed better with higher-resolution texture maps, or smaller texel feature sizes.

Ours RGBA (𝒯 = 5) Ours RGBA (𝒯 = 10) Ours RGBA (𝒯 = 40)Ours RGBA (𝒯 = 2)

Figure A.17. Qualitative NVS results on the Deep Blending dataset with vayring texture map resolutions and a fixed number of
Gaussians. Given a fixed number of Gaussians, novel-view synthesis performance improves as the texture map resolution increases.
Detailed appearance can be reconstructed better with higher-resolution texture maps, or smaller texel feature sizes.

Ours RGBA (2%) Ours RGBA (10%) Ours RGBA (100%)Ours RGBA (1%)

Figure A.18. Qualitative NVS results on the Blender dataset with vayring numbers of Gaussians and a fixed texture map resolu-
tion. Given a fixed texture map resolution, novel-view synthesis performance improves as the number of Gaussians increases. Detailed
appearance and complex geometry can be reconstructed with more and therefore smaller Gaussians.

Ours RGBA (2%) Ours RGBA (10%) Ours RGBA (100%)Ours RGBA (1%)

Figure A.19. Qualitative NVS results on the Mip-NeRF 360 dataset with vayring numbers of Gaussians and a fixed texture map
resolution. Given a fixed texture map resolution, novel-view synthesis performance improves as the number of Gaussians increases.
Detailed appearance and complex geometry can be reconstructed with more and therefore smaller Gaussians.

Ours RGBA (2%) Ours RGBA (10%) Ours RGBA (100%)Ours RGBA (1%)

Figure A.20. Qualitative NVS results on the DTU dataset with vayring numbers of Gaussians and a fixed texture map resolution.
Given a fixed texture map resolution, novel-view synthesis performance improves as the number of Gaussians increases. Detailed appear-
ance and complex geometry can be reconstructed with more and therefore smaller Gaussians.

Ours RGBA (2%) Ours RGBA (10%) Ours RGBA (100%)Ours RGBA (1%)

Figure A.21. Qualitative NVS results on the Tanks and Temples dataset with vayring numbers of Gaussians and a fixed texture
map resolution. Given a fixed texture map resolution, novel-view synthesis performance improves as the number of Gaussians increases.
Detailed appearance and complex geometry can be reconstructed with more and therefore smaller Gaussians.

Ours RGBA (2%) Ours RGBA (10%) Ours RGBA (100%)Ours RGBA (1%)

Figure A.22. Qualitative NVS results on the Deep Blending dataset with vayring numbers of Gaussians and a fixed texture map
resolution. Given a fixed texture map resolution, novel-view synthesis performance improves as the number of Gaussians increases.
Detailed appearance and complex geometry can be reconstructed with more and therefore smaller Gaussians.

Alpha-only (A) RGB RGBA3DGS*

Figure A.23. Texture map ablation results on the Blender dataset. We see that models with alpha textures (alpha-only and RGBA
models) achieves better NVS quality since both appearance and geometry can be reconstructed better due to spatially varying alpha
modulation and composition. On the other hand, RGB Textured Gaussians models achieve worse visual quality since each Gaussian can
still only represent ellipsoids.

Alpha-only (A) RGB RGBA3DGS*

Figure A.24. Texture map ablation results on the Mip-NeRF 360 dataset. We see that models with alpha textures (alpha-only and
RGBA models) achieves better NVS quality since both appearance and geometry can be reconstructed better due to spatially varying alpha
modulation and composition. On the other hand, RGB Textured Gaussians models achieve worse visual quality since each Gaussian can
still only represent ellipsoids.

Alpha-only (A) RGB RGBA3DGS*

Figure A.25. Texture map ablation results on the DTU dataset. We see that models with alpha textures (alpha-only and RGBA models)
achieves better NVS quality since both appearance and geometry can be reconstructed better due to spatially varying alpha modulation and
composition. On the other hand, RGB Textured Gaussians models achieve worse visual quality since each Gaussian can still only represent
ellipsoids.

Alpha-only (A) RGB RGBA3DGS*

Figure A.26. Texture map ablation results on the Tanks and Temples dataset. We see that models with alpha textures (alpha-only and
RGBA models) achieves better NVS quality since both appearance and geometry can be reconstructed better due to spatially varying alpha
modulation and composition. On the other hand, RGB Textured Gaussians models achieve worse visual quality since each Gaussian can
still only represent ellipsoids.

Alpha-only (A) RGB RGBA3DGS*

Figure A.27. Texture map ablation results on the Deep Blending dataset. We see that models with alpha textures (alpha-only and
RGBA models) achieves better NVS quality since both appearance and geometry can be reconstructed better due to spatially varying alpha
modulation and composition. On the other hand, RGB Textured Gaussians models achieve worse visual quality since each Gaussian can
still only represent ellipsoids.

Alpha-only (A) RGB RGBA3DGS*

Figure A.28. Color component decomposition visualization of the Blender dataset. With alpha textures, the alpha-modulated and
composited base color component can already recosntruct high-frequency textures, as shown in results of the alpha-only and RGBA
Texuted Gaussians models. For models with only RGB textures, the base color component reconstructs lower frequency colors while the
texture map color component reconstructs high frequency appearance.

Alpha-only (A) RGB RGBA3DGS*

Figure A.29. Color component decomposition visualization of the Mip-NeRF 360 dataset. With alpha textures, the alpha-modulated
and composited base color component can already recosntruct high-frequency textures, as shown in results of the alpha-only and RGBA
Texuted Gaussians models. For models with only RGB textures, the base color component reconstructs lower frequency colors while the
texture map color component reconstructs high frequency appearance.

Alpha-only (A) RGB RGBA3DGS*

Figure A.30. Color component decomposition visualization of the DTU dataset. With alpha textures, the alpha-modulated and
composited base color component can already recosntruct high-frequency textures, as shown in results of the alpha-only and RGBA
Texuted Gaussians models. For models with only RGB textures, the base color component reconstructs lower frequency colors while the
texture map color component reconstructs high frequency appearance.

Alpha-only (A) RGB RGBA3DGS*

Figure A.31. Color component decomposition visualization of the Tanks and Temples dataset. With alpha textures, the alpha-
modulated and composited base color component can already recosntruct high-frequency textures, as shown in results of the alpha-only
and RGBA Texuted Gaussians models. For models with only RGB textures, the base color component reconstructs lower frequency colors
while the texture map color component reconstructs high frequency appearance.

Alpha-only (A) RGB RGBA3DGS*

Figure A.32. Color component decomposition visualization of the Deep Blending dataset. With alpha textures, the alpha-modulated
and composited base color component can already recosntruct high-frequency textures, as shown in results of the alpha-only and RGBA
Texuted Gaussians models. For models with only RGB textures, the base color component reconstructs lower frequency colors while the
texture map color component reconstructs high frequency appearance.

