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Supplementary Material

0.1. Addition related work001

The literature [22, 24] on recovering 3D human represen-002
tations from RGB images is vast. Techniques fall broadly003
into two categories. Parametric methods [3, 16] character-004
ize the human body in terms of a parametric model. Model005
parameters defining body pose and shape are then estimated006
from images via direct optimization [20, 25, 26] or regres-007
sion with deep networks [5, 6, 11, 12]. Non-parametric008
methods directly regress a 3D body representation from im-009
ages using convolutional neural networks [13], transform-010
ers [15], intermediate representations [18] or implicit func-011
tions [7, 21]. On the other hand, the development of human012
shape estimation erupt 3D digital huaman research applica-013
tions [4, 9] and the parametric models [16] from images and014
videos have attracted increasing attention. Optimization-015
based methods [20] detect 2D features corresponding to the016
whole body and fit the SMPL-X model. However, they suf-017
fer from slow speed and are ultimately limited by the qual-018
ity of the 2D keypoint detectors. Hence, learning-based019
models are proposed. Due to the highly complex multi-020
stage pipelines, the reconstructed results inevitably gener-021
ated unnatural articulation mesh and implausible 3D wrist022
rotations. [14] proposes the first ViT-based backbone [8]023
to relieve the issues in previous approaches. This provides024
a promising and concise way to leverage the scaling-up025
model for two-stage body measurements. However, there is026
a scarcity of benchmark datasets for comparing body mea-027
surements, and few researchers are exploring the integration028
of additional data toward generalizable and accurate body029
measurement results.030

0.2. Detailed about datasets031

We describe the datasets mentioned in the main paper. Note032
that all these are public academic datasets, each holding a li-033
cense. We follow the common practice of using them in our034
non-commercial research and refer readers to their policies035
to ensure personal information protection.036

Lidar dataset: We utilize a high-performance commer-037
cial Mojave Sensor, available at an affordable price, for038
scanning subjects aged between 18 and 24 years old. This039
choice allows us to conveniently conduct tests on LiDAR040
data. The output of this sensor is a distance and amplitude041
file. The distance image can be converted to a point cloud042
(x,y,z values for each distance point) by leveraging the sen-043
sor lens parameters that are stored on the device. Further-044
more, each subject was measured by a skilled anthropolo-045
gist, providing chest, waist, hip, wrist, and shoulder width046
as the GT measurement values for our experiments. RGB047
images were captured in a well-lit, indoor setup, with sub-048

jects standing in A-pose. Note that we never require sub- 049
jects to wear tight-fitting clothing. Capture distance varied 050
from 2.5-3.5 meters. 051

AGORA [19] is a synthetic dataset, rendered with high- 052
quality human scans and realistic 3D scenes. It consists 053
of 4240 textured human scans with diverse poses and ap- 054
pearances, each fitted with accurate SMPL-X annotations. 055
There are 14K training images and 3K test images, and 056
173K instances. 057

3DPW [23] is the first in-the-wild dataset with a con- 058
siderable amount of data, captured with a moving phone 059
camera and IMU sensors. It features accurate SMPL anno- 060
tations and 60 video sequences captured in diverse environ- 061
ments. We follow the official definition of train, val, and 062
test splits. 063

Human3.6M [10] is a studio-based 3D motion capture 064
dataset including 3.6M human poses and corresponding im- 065
ages captured by a high-speed motion capture system. In 066
this paper, we use the annotation generated by NeuralAnnot, 067
which fits the SMPL-X to the GT 2D joints and includes a 068
total of 312.2K annotated data. 069

MPI-INF-3DHP [17] is captured with a multi-camera 070
markerless motion capture system in constrained indoor and 071
complex outdoor scenes. It records 8 actors performing 8 072
activities from 14 camera views. We use the annotations 073
generated by NeuralAnnot, which fits the SMPL-X to the 074
GT 2D joints and includes a total of 939,847 annotated data. 075

MPII [1] is a widely used in-the-wild dataset that offers 076
a diverse collection of approximately 25K images. Each 077
image within the dataset contains one or more instances, 078
resulting in a total of over 40K annotated people instances. 079
Among the 40K samples, 28K samples are used for training, 080
while the remaining samples are reserved for testing. We 081
use the annotations generated by NeuralAnnot, which fits 082
the SMPL-X to the GT 2D joints and includes a total of 083
˜28.9K annotated data. 084

0.3. Motivation about focusing network 085

Traditional fine-tuning methods require modifying the top 086
layer of the network to adapt differences in label spaces and 087
losses, which can disrupt the pretrained features and dimin- 088
ish the network’s reusability. In contrast, our focusing net- 089
work employs bypass network to extract various guidance 090
features. This modification preserves the pretrained features 091
for consistent performance and facilitates efficient model 092
sharing. On the other hand, the traditional two-stage meth- 093
ods of reconstructing before measuring have limitations in 094
generalizing to different scene categories. Additionally, the 095
reconstruction quality lacks reliability under extreme view- 096
ing angles, making accurate measurement across various 097
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scenarios challenging. We are the first to solve the above098
problem by utilizing large-scale models for estimating an-099
thropometric measurements. Moreover, we introduce a by-100
pass network to fine-tune the output of the large model, an101
innovation not present in previous methods.102

0.4. Details process about using Mojave Sensor103

The output of this sensor for a subject is a distance and am-104
plitude file. The distance image can be converted to a point105
cloud (x,y,z values for each distance point) by leveraging106
the sensor lens parameters that are stored on the device. By107
using the focal length and optical center of the lens a coef-108
ficient for x, y, and z can be calculated at each pixel loca-109
tion. These arrays of coefficients are stored on the device110
referred to as the pixel rays. After querying this informa-111
tion from the sensor, each value in the distance image can112
be multiplied by the three coefficients to obtain its x,y, and113
z coordinates in 3D space.114

0.5. Training details115

Following previous work, we use the following typ-116
ical datasets for training focusing network, i.e., Hu-117
man3.6M [10], MPI-INF-3DHP [17], MPII [2] and so on.118
Additionally, we provided 30 sets of samples, each con-119
taining frontal and profile images along with additional in-120
formation. During the training of the bypass network, we121
utilized both our collected dataset and publicly available122
datasets, as described in Sec.5.1 of the main paper. Ad-123
ditionally, our Fashion-body dataset can be continually en-124
hanced with diverse scenarios and individuals to meet the125
needs of a broader range of human reconstruction and mea-126
surement tasks. We considered the fairness of these base-127
lines for comparison. The datasets used for HMR-BMViT128
and 4D-BMViT training are consistent with the bypass net-129
work, but NeuralAnthro could not support such a large130
amount of data for training.131

0.6. Fixed hyper-parameter for loss function132

In this part, we evaluate the effect of the loss design pa-133
rameters on the measurement performance. We re-trained134
the proposed method on our Fashion-body dataset using135
fixed values for the parameters in the loss function intro-136
duced in main paper. We chose four different fixed values:137
0.1,0.2,0.4,0.8. The validation error is presented in Tab. 1.138
The result shows that the larger value of the α parameter139
multiplies the measurement parts the smaller error of mea-140
surement results.141

0.7. Discussion142

The generalization ability of the proposed approach, such143
as its robustness to background changes and variations in144
lighting conditions. Actually, our Fashion-body dataset145

α Chest Waist Hip Wrist Shoulder width

0.1 6.02 9.57 10.99 1.07 4.34
0.2 5.87 9.04 10.73 1.00 4.24
0.4 4.31 5.21 7.21 0.56 2.73
0.8 3.07 3.91 6.95 0.41 2.03

Table 1. The MAE error of five body part in hyper-parameter
tuning.

consists of examples collected from diverse angles, light- 146
ing conditions, and backgrounds. Our experiments present 147
the body measurement outcomes and MAE of our ap- 148
proach across multiple datasets, including our Fashion- 149
body dataset, which validate the robustness of our approach. 150
Applications. We propose tailored measurement pipelines 151
and scanner selections for diverse anthropometric applica- 152
tions: medicine, fashion, fitness, and entertainment. Our 153
model can estimate key parameters of the human body from 154
a simple RGB image captured by a camera or smartphone, 155
making it applicable across various domains such as health, 156
fashion, and entertainment. In the health domain, our model 157
enables users to monitor changes in body measurements 158
over fixed intervals (e.g., weekly or monthly) by capturing 159
images, aiding in the formulation of fitness and diet plans. 160
In the fashion domain, our model’s outputs can assist users 161
in selecting the most suitable clothing sizes in online shop- 162
ping scenarios. In the entertainment domain, our model 163
serves as a valuable tool for virtual character creation and 164
clothing rendering, ensuring the physical realism and co- 165
herence of virtual scenes. 166
Limitations and Future works. Due to constraints related 167
to the specialized equipment and cost required for dataset 168
creation, our model is trained only on single-view human 169
reconstruction, disregarding the potential benefits of infor- 170
mation redundancy from multiple views. Utilizing multi- 171
ple views to assist in human reconstruction can mitigate the 172
impact of certain viewpoints or inappropriate poses on the 173
model. In the future, we anticipate generating multi-view 174
human reconstruction datasets. Additionally, considering 175
the inference speed of the model is crucial for practical sce- 176
narios. Therefore, while ensuring model performance, we 177
aim to enhance the inference speed. 178

References 179

[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and 180
Bernt Schiele. 2d human pose estimation: New benchmark 181
and state of the art analysis. In IEEE Conference on Com- 182
puter Vision and Pattern Recognition (CVPR), 2014. 1 183

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and 184
Bernt Schiele. 2d human pose estimation: New benchmark 185
and state of the art analysis. In Proceedings of the IEEE Con- 186
ference on computer Vision and Pattern Recognition, pages 187
3686–3693, 2014. 2 188

2



CVPR
#13584

CVPR
#13584

CVPR 2025 Submission #13584. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[3] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Se-189
bastian Thrun, Jim Rodgers, and James Davis. Scape: shape190
completion and animation of people. In ACM SIGGRAPH191
2005 Papers, pages 408–416. 2005. 1192

[4] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter193
Gehler, Javier Romero, and Michael J Black. Keep it smpl:194
Automatic estimation of 3d human pose and shape from a195
single image. In Computer Vision–ECCV 2016: 14th Euro-196
pean Conference, Amsterdam, The Netherlands, October 11-197
14, 2016, Proceedings, Part V 14, pages 561–578. Springer,198
2016. 1199

[5] Vasileios Choutas, Georgios Pavlakos, Timo Bolkart, Dim-200
itrios Tzionas, and Michael J Black. Monocular expressive201
body regression through body-driven attention. In Computer202
Vision–ECCV 2020: 16th European Conference, Glasgow,203
UK, August 23–28, 2020, Proceedings, Part X 16, pages 20–204
40. Springer, 2020. 1205

[6] Vasileios Choutas, Lea Müller, Chun-Hao P Huang, Siyu206
Tang, Dimitrios Tzionas, and Michael J Black. Accurate 3d207
body shape regression using metric and semantic attributes.208
In Proceedings of the IEEE/CVF Conference on Computer209
Vision and Pattern Recognition, pages 2718–2728, 2022. 1210

[7] Enric Corona, Albert Pumarola, Guillem Alenya, Ger-211
ard Pons-Moll, and Francesc Moreno-Noguer. Smplicit:212
Topology-aware generative model for clothed people. In213
Proceedings of the IEEE/CVF conference on computer vi-214
sion and pattern recognition, pages 11875–11885, 2021. 1215

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,216
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,217
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-218
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is219
worth 16x16 words: Transformers for image recognition at220
scale. CoRR, abs/2010.11929, 2020. 1221

[9] Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang222
Cai, Lei Yang, and Ziwei Liu. Avatarclip: Zero-shot text-223
driven generation and animation of 3d avatars. arXiv preprint224
arXiv:2205.08535, 2022. 1225

[10] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian226
Sminchisescu. Human3. 6m: Large scale datasets and pre-227
dictive methods for 3d human sensing in natural environ-228
ments. IEEE transactions on pattern analysis and machine229
intelligence, 36(7):1325–1339, 2013. 1, 2230

[11] Angjoo Kanazawa, Michael J Black, David W Jacobs, and231
Jitendra Malik. End-to-end recovery of human shape and232
pose. In Proceedings of the IEEE conference on computer233
vision and pattern recognition, pages 7122–7131, 2018. 1234

[12] Muhammed Kocabas, Chun-Hao P Huang, Otmar Hilliges,235
and Michael J Black. Pare: Part attention regressor for 3d236
human body estimation. In Proceedings of the IEEE/CVF237
International Conference on Computer Vision, pages 11127–238
11137, 2021. 1239

[13] Nikos Kolotouros, Georgios Pavlakos, and Kostas Dani-240
ilidis. Convolutional mesh regression for single-image hu-241
man shape reconstruction. In Proceedings of the IEEE/CVF242
Conference on Computer Vision and Pattern Recognition,243
pages 4501–4510, 2019. 1244

[14] Jing Lin, Ailing Zeng, Haoqian Wang, Lei Zhang, and Yu Li.245
One-stage 3d whole-body mesh recovery with component246

aware transformer. In Proceedings of the IEEE/CVF Con- 247
ference on Computer Vision and Pattern Recognition, pages 248
21159–21168, 2023. 1 249

[15] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu- 250
man pose and mesh reconstruction with transformers. In Pro- 251
ceedings of the IEEE/CVF conference on computer vision 252
and pattern recognition, pages 1954–1963, 2021. 1 253

[16] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard 254
Pons-Moll, and Michael J Black. Smpl: A skinned multi- 255
person linear model. In Seminal Graphics Papers: Pushing 256
the Boundaries, Volume 2, pages 851–866. 2023. 1 257

[17] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal 258
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian 259
Theobalt. Monocular 3d human pose estimation in the wild 260
using improved cnn supervision. In 2017 international con- 261
ference on 3D vision (3DV), pages 506–516. IEEE, 2017. 1, 262
2 263

[18] Gyeongsik Moon and Kyoung Mu Lee. I2l-meshnet: Image- 264
to-lixel prediction network for accurate 3d human pose and 265
mesh estimation from a single rgb image. In Computer 266
Vision–ECCV 2020: 16th European Conference, Glasgow, 267
UK, August 23–28, 2020, Proceedings, Part VII 16, pages 268
752–768. Springer, 2020. 1 269

[19] Priyanka Patel, Chun-Hao P Huang, Joachim Tesch, 270
David T Hoffmann, Shashank Tripathi, and Michael J Black. 271
AGORA: Avatars in geography optimized for regression 272
analysis. In Proceedings of the IEEE/CVF Conference on 273
Computer Vision and Pattern Recognition, pages 13468– 274
13478, 2021. 1 275

[20] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, 276
Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas, and 277
Michael J Black. Expressive body capture: 3d hands, 278
face, and body from a single image. In Proceedings of 279
the IEEE/CVF conference on computer vision and pattern 280
recognition, pages 10975–10985, 2019. 1 281

[21] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul 282
Joo. Pifuhd: Multi-level pixel-aligned implicit function for 283
high-resolution 3d human digitization. In Proceedings of 284
the IEEE/CVF Conference on Computer Vision and Pattern 285
Recognition, pages 84–93, 2020. 1 286

[22] Yating Tian, Hongwen Zhang, Yebin Liu, and Limin Wang. 287
Recovering 3d human mesh from monocular images: A sur- 288
vey. IEEE transactions on pattern analysis and machine in- 289
telligence, 2023. 1 290

[23] Timo Von Marcard, Roberto Henschel, Michael J Black, 291
Bodo Rosenhahn, and Gerard Pons-Moll. Recovering ac- 292
curate 3d human pose in the wild using imus and a moving 293
camera. In Proceedings of the European conference on com- 294
puter vision (ECCV), pages 601–617, 2018. 1 295

[24] Jinbao Wang, Shujie Tan, Xiantong Zhen, Shuo Xu, Feng 296
Zheng, Zhenyu He, and Ling Shao. Deep 3d human pose 297
estimation: A review. Computer Vision and Image Under- 298
standing, 210:103225, 2021. 1 299

[25] Donglai Xiang, Hanbyul Joo, and Yaser Sheikh. Monocu- 300
lar total capture: Posing face, body, and hands in the wild. 301
In Proceedings of the IEEE/CVF conference on computer vi- 302
sion and pattern recognition, pages 10965–10974, 2019. 1 303

3



CVPR
#13584

CVPR
#13584

CVPR 2025 Submission #13584. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[26] Andrei Zanfir, Eduard Gabriel Bazavan, Mihai Zanfir,304
William T Freeman, Rahul Sukthankar, and Cristian Smin-305
chisescu. Neural descent for visual 3d human pose and306
shape. In Proceedings of the IEEE/CVF Conference on Com-307
puter Vision and Pattern Recognition, pages 14484–14493,308
2021. 1309

4


	Addition related work
	Detailed about datasets
	Motivation about focusing network
	Details process about using Mojave Sensor
	Training details
	Fixed hyper-parameter for loss function
	Discussion

