Accelerating Diffusion Transformer via Increment-Calibrated Caching with
Channel-Aware Singular Value Decomposition

Supplementary Material

6. Detailed Ilustration of CA-SVD

Algorithm 2 Channel-activation-aware Singular Value De-
composition

Input: Calibration set D, DiT model €g(-), number of
timesteps 7, noise scheduler 53,
Output: Scale matrix S; and S, of each linear layer ! of

€o(")

1: for each linear layer [of €y(-) do

2. Initialize zero vector S; and S,

3: end for

4: for each zy € D do

55 t~U[L1,T]

6: 2z ~N(z,0:20,02)

7. Compute €y(z¢,t)) and

8: for each linear layer [of €y(-) do

9: Accumulate the magnitude of inputs and outputs
to S; and S,

10: end for

11: end for

12: Turn S; and S, into diagonal matrices
13: return Outputs

As show in Algorithm 2, to enhance increment-
calibrated caching with a extended version of ASVD [45],
we obtain the distribution of activations of reverse pro-
cess from a calibration set, which is composed of a small
number of clean images. Just like the training process
of DDPM [14], the reparameterization trick is utilized to
model the distribution of noised data at any given timestep,
which is streamed to DiT model. During the execution of
DiT model, the accumulated activation magnitude is calcu-
lated, which will used to scale weight matrix before SVD as

Eq. (5).

7. Implementation Details

We implement our methods based on the source codes and
pre-trained models of DiT [30] and PixArt-a [4]. All
the comparative experiments are conducted under the same
conditions to ensure fairness, where the hardware platform
and random seed are both unified. For the class-conditional
image synthesis on ImageNet dataset, all the results are
based on 8x NVIDIA RTX 4090D GPUs with a global
batch size of 128 and data precision of TF32. For the re-
sults of text-to-image generation, we employ one 4090D

GPU and set the batch size to 2. All the images are gen-
erated with the precision of FP16.

8. Theoretical analysis

To explain why the proposed method works, we analyze
the induced error of both naive caching and increment-
calibrated caching. To simplify the discussion, we ignore
the error accumulation effect. Assuming the output of lin-
ear layer [at step s will be reused at step m, the error Ay of
increment-calibrated caching can be formulated as,

Ay = me,l - (W‘r&,l + WT(Im,l - Is,l))

=W —W,)(xm,1 — xs1) = AW Az ™

where W is the original weight, W, is the approximated
weight of rank r, and x;; denotes the input at step ¢. The
upper bound of MSE can be represented as ||AWH§ HAxH;
According to the property of SVD, a larger r always tends
to decrease HAWHg Note that the proposed method will
be reduced to naive caching when r equals 0, therefore the
proposed method can outperform naive caching by limiting
the upper bound of MSE.

9. Visualization

To visually demonstrate the effectiveness of the pro-
posed method, We provided generation images based on
non-caching, naive caching and the proposed increment-
calibrated caching with different sampler settings in Fig. 8,
Fig. 9 and Fig. 10. We found naive caching tends to blur the
details or Change the posture of an object, especially when
a small step number is given. The proposed method can
effectively correct these distortions and generate images of
higher quality with marginal computation cost.

Non-
caching
x1 MACs

Naive
Caching

x0.5 MACs

Non-
caching
x1 MACs &5

Naive
Caching
(p=2)

x0.5 MACsfg

ICC .
(CA-SVD, | .
p=2, r=128) 9%
x0.6 MACs ®

Non-
caching
x1 MACs

Naive
Caching

Figure 10. Visualization of the proposed method evaluated on DiT-XL/2 with 20-step DDIM. The cfg scale is set to 4.

