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Supplementary Material

6. Overview

In this supplementary material, we provide a detailed out-
line structured as follows: Sec. 7 delves into additional im-
plementation specifics of ActiveGAMER. Sec. 8 examines
the computation costs associated with each module. Com-
plementing the results in Sec. 4, Sec. 9 extends our analy-
sis for MP3D and Replica, including per-scene reconstruc-
tion and novel view rendering results, both quantitative and
qualitative. We also include trajectory visualizations to il-
lustrate the planned trajectories, and evaluate the trajectory
lengths across scenes. Lastly, we present analysis and visu-
alizations of common failure cases observed in our method.

7. Implementation Details

7.1. Hardware Requirements

We conduct our experiments on a desktop PC equipped with
a 2.2GHz Intel Xeon E5-2698 CPU and an NVIDIA V100
GPU. Memory consumption varies depending on the scene
size. For reference, in an 80 m® scene, the GPU memory
and RAM usage are as follows across different stages:

* Coarse-Exploration: GPU memory consumption is ap-
proximately 5.3GB, and RAM usage is 1GB.

* Fine-Exploration: GPU memory increases to 6.2GB due
to the addition of more Gaussians.

* Post-Refinement: GPU memory reaches 6.5GB, and
RAM usage increases to 1.8GB as more optimization it-
erations are performed.

7.2. Coarse-to-fine Exploration Details

Avoiding candidate sampling near surfaces. While
building the Exploration Candidate Pool, we intentionally
avoid sampling candidates from free spaces close to sur-
faces for two key reasons: (1) Rendering Limitations: The
Gaussian Map renderer ignores 3D Gaussians near the cam-
era. When candidates are close to surfaces (e.g., walls),
the most informative viewpoints tend to face the surface di-
rectly. This results in low-visibility masks due to the ren-
derer ignoring nearby Gaussians, leading to incorrect can-
didate selection. (2) Collision Prevention: To simulate col-
lision avoidance between the agent/camera and the surface,
we maintain a buffer of free space between them.

7.3. Post-Refinement Details

During the exploration stages, each Gaussian Map update
step uses only 15 optimization iterations, and a quarter of
the image resolution is employed for densification. In the
post-refinement stage, the number of optimization iterations

increases from 15 to 60, and the full image resolution is
utilized for densification.

8. Runtime Analysis

In this section, we present a runtime analysis of the three

major modules in ActiveGAMER:

» Data Generation: A simulator generates RGB-D data.

* Gaussian Mapping Module: Updates the Gaussian
Map.

* Rendering-Based Planning Module: Includes a global
planner for goal searching and a local planner for path
planning.

For data generation, HabitatSim is required to generate
680 x 1200 RGB-D data per iteration. The detailed run-
time for each stage is presented in Tab. 4. We compute the
statistics using average.

Two types of statistics are reported in the table:

* Per-iteration timing: The runtime for each individual
module when it is activated.

* Overall timing per stage: The average runtime consid-
ering the infrequent activation of certain modules.

The Gaussian Mapping Module is active only during
keyframe steps (i.e. every five frames) in the exploration
stage, reducing its average runtime. The Planning Module
is triggered on demand, contributing minimal runtime over-
head. In contrast, Post-Refinement involves more intensive
computation with additional iterations.

9. Additional Experimental Results

9.1. Per-scene Results on Replica

3D Reconstruction In Tab. 5, we present the 3D recon-
struction results on the Replica dataset [60], comparing our
method with the state-of-the-art active mapping approach,
NARUTO [18]. Our method demonstrates comparable re-
construction performance to NARUTO, achieving higher
accuracy and completeness on average while maintaining
a similar completeness ratio. The slightly lower complete-
ness ratio in our results may be attributed to the extrapola-
tion capability inherent in NARUTO’s neural radiance field
representation.

Qualitative Results In Fig. 6, we present a qualitative
evaluation of our method’s rendering performance against
the ground truth across various scenes in the Replica
dataset. The evaluation involves a novel view trajectory
with a 360° circular movement (an outside-in trajectory
looking at a specific point in the scene). To provide a



Stage Module Per Iteration (s) Per Stage (s)

All HabitatSim 0.244 0.244
Gaussian Mapping 0.687 0.181
Coarse-Exploration Planning - Global 1.126 0.071
Planning - Local 0.018 '
Gaussian Mapping 0.759 0.184
Fine-Exploration Planning - Global 5411 0983
Planning - Local 0.023 ’
Post-Refinement Gaussian Mapping 2.580 2.580

Table 4. Runtime Analysis of ActiveGAMER Modules on Replica-room0.

Methods Metrics office0 officel office2 office3 officed room0 rooml room?2 \ Avg.
Acc. (cm) | 1.30 1.03 2.25 2.29 1.75 1.56 1.25 1.47 1.61

[18]  Comp. (cm) | 1.39 1.53 1.69 2.27 1.79 1.68 1.43 1.48 1.66

Comp. Ratio 1 98.17 9526 97.54 9391 97.93 9828 98.04 9847 | 97.20

Acc. (cm) | 1.35 1.07 1.06 1.03 0.84 1.22 1.40 1.31 1.16

Comp. (cm) | 1.93 1.26 1.31 1.13 1.02 1.89 2.06 1.89 1.56

Comp. Ratio (%) 1 9629  98.14 97091 98.12 98.18 9433 9393 95.15 | 96.50

Table 5. 3D Reconstruction Results on Replica[60].
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Figure 6. Novel View Rendering Results on Replica. This figure provides a side-by-side comparison of rendering results on the Replica
dataset. Upper rows show the ground truth RGB-D images, while bottom rows present the rendered RGB-D images.

comprehensive visualization, we present the rendering re- 9.2. Per-scene Results on MP3D

sults from four directions: front, left, right, and back. Our

method demonstrates high fidelity in both RGB and depth 3D Reconstruction In Tab. 6, we present a compar-

rendering. ative analysis of our method against the state-of-the-art
approaches, Active Neural Mapping (ANM) [69] and



Methods Metrics Gdvg gZ6f HxpK pLed YmJk Avg.
Acc. (cm) | 5,09 415 1560 5.56 8.61 7.80

ANM [69] Comp. (cm) | 5.69 743 1596 8.03 8.46 9.11
Comp. Ratio1 80.99 80.68 4834 7641 79.35 173.15

Acc. (cm) | 378  3.36 9.24 5.15  10.04 6.31

[18] Comp. (cm)] 291 2.31 2.67 3.24 3.86 3.00

Comp. Ratio? 91.15 95.63 91.62 87.76 84.74 90.18

Acc. (cm) | 1.28 1.55 1.46 2.13 1.87 1.66

Comp. (cm) |  2.62 1.74 1.68 2.63 2.83 2.30

Comp. Ratio1 97.62 97.74 97.29 9396 89.87 95.32

Table 6. 3D Reconstruction Results on Matterport3D [7] dataset. Our method achieves consistently better reconstruction than prior

methods.

Methods Metrics Gdvg gZo6f HxpK pLed YmJk Avg.
PSNR 1 2240 2265 1474 21.63 21.20 20.52

18] SSIM1t  0.81  0.85 0.45 0.74 0.75 0.72

LPIPS|, 050 048 0.76 0.62 0.56 0.58

L1-D | 5.11 6.00 9.82 9.91 8.94 7.95
PSNR T 25.51 2687 2248 26.75 2220 24.76

SSIM1t 092  0.96 0.82 0.94 0.84 0.90

LPIPS|, 0.20 0.15 0.34 0.19 0.37 0.25

L1-D | 1.92 1.54 6.42 359 10.67 4.83

Table 7. Novel View Rendering results on Matterport3D[7] dataset. Our method shows consistently better rendering result than

NARUTO.

NARUTO [18]. The results clearly demonstrate that our
method outperforms both ANM and NARUTO across all
evaluated metrics. Notably, our approach achieves signifi-
cant improvements in reconstruction quality and complete-
ness, surpassing the benchmarks established by prior meth-
ods, thanks to the explicit point cloud representation (ex-
tracted from Gaussian Map). This consistent performance
advantage highlights the effectiveness of our method in
tackling challenging reconstruction scenarios.

Novel View Rendering We further evaluate the novel
view rendering performance on MP3D, as shown in Tab. 7.
For this evaluation, we generate a circular novel view trajec-
tory in each selected scene and compare the performance of
NARUTO [18] and our proposed method. Leveraging the
Gaussian Mapping representation, our method consistently
demonstrates superior rendering performance compared to
NARUTO, which relies on a neural radiance field represen-
tation.

Method [ Avyg [ OO Ol 02 03 04 RO RI R2

NARUTO ‘7483 ‘ 81.27 30.02 9020 88.59 9636 7391 96.99 4131
Ours ‘66.59‘46.13 35.18 64.16 95.13 7887 9392 5342 65.87

Table 8. Trajectory length evaluation on Replica dataset

Qualitative Results In Fig. 7, we present a qualitative
evaluation of our method compared to the ground truth
for various scenes in the Matterport3D dataset. The odd-
numbered rows display the ground truth data, while the
even-numbered rows showcase our method’s geometric and
photometric reconstructions. Each scene is labeled with a
unique code (e.g., “Gdvg”, “gZ6f”) on the left. The first
column highlights the exterior reconstruction; the second
and fourth columns present RGB rendering results of the
interior space; and the third and fifth columns show the
corresponding depth rendering results. This result provides
a comprehensive visual comparison, effectively illustrating
the geometric and photometric performance of our method
across the scenes.



9.3. Trajectory Results

We visualize the planned trajectories in Replica scenes, as
shown in Fig. 8. During , the planned
camera movement is restricted to a 2D plane, as candi-
date sampling is limited to a single height level. In

, two height levels are defined, allowing the
camera to search for candidates across these levels.

We further compare the trajectory lengths of ours versus
NARUTO [18] on the Replica dataset, with the results de-
tailed in Tab. 8. Our approach exhibits a shorter average tra-
jectory length than NARUTO, underscoring our efficiency
in terms of travel distance.

9.4. Failure Cases

Although our method demonstrates high-quality recon-
struction and high-fidelity rendering, some failure cases are
observed, as illustrated in Fig. 9.

Ignored Candidates Near Surface Regions. As dis-
cussed in Sec. 7.2, we avoid sampling candidates from re-
gions near surfaces. Consequently, regions that can only be
observed from such candidates remain unobserved, leading
to incomplete reconstruction in these areas.

Double-Sided Objects. Our method relies on rendering-
based exploration information derived from the rendered
visibility mask. For double-sided objects, rendering from
the back side does not provide additional information, and
such viewpoints are not considered informative. This re-
sults in incomplete reconstruction of back-side regions. To
address this limitation, we plan to incorporate surface infor-
mation into the rendering-based information gain in future
work, enhancing the robustness of our exploration strategy.
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Figure 7. MP3D Reconstruction and Rendering Results. This figure provides a side-by-side comparison of reconstruction results on
the MP3D dataset. Odd-numbered rows show the ground truth meshes and RGB-D images, while even-numbered rows present the 3D
point cloud extracted from the Gaussian Map and the rendered RGB-D images. The noisy points represent low-weight Gaussians and do
not affect actual rendering quality. Our results demonstrate high-quality and complete reconstructions, closely aligning with the ground

truths in both geometric and photometric aspects, highlighting the effectiveness of our method in accurately reconstructing complex spatial
geometries.
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Figure 8. The exploration trajectories for selected scenes in Replica are visualized, showing only keyframe cameras. Camera colors indicate
the transition from coarse to exploration stages.



(A) Ignored candidates near surface regions. (B) Double-sided objects

Figure 9. Reconstruction Failure Cases. Our method encounters two common failure scenarios: (A) Insufficient observations due to
ignored candidates near surface regions. (B) Unreconstructed back sides of double-sided objects, as these regions are not captured by the
rendering-based information gain. The yellow-highlighted areas indicate regions with either no reconstruction or low completeness.
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