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Overview
Our main paper outlines the core idea and techniques of pro-
posed method. It also demonstrates the effectiveness of our
four main methodological contributions and adopted set-
tings through experimental validation. In this Supplemen-
tary Material, we provide additional details, including the
training and inference pseudocode of proposed ADC frame-
work in Sec. A, more ablation studies in Sec. B, more com-
parison results and a user study analysis in Sec. C, as well
as an efficiency evaluation of AdcSR and its SD-based one-
step teacher OSEDiff [23] on a real mobile platform, which
are not included in the main paper due to space constraints.

A. Pseudocode of Training and Inference
In this section, we present the training and inference pro-
cedures of our ADC framework, as summarized in Algo. 1.
The training process consists of two stages: (1) pretraining
the channel-pruned SD VAE decoder to restore its decod-
ing ability, and (2) knowledge distillation with adversarial
loss to compensate for performance degradation due to our
compression. The inference of AdcSR is faster than com-
plete SD [14, 15] models due to its compressed structure.

B. More Ablation Studies
Effect of Channel Pruning. Tab. B.1 compares employed
channel pruning to other two alternative structural compres-
sion strategies: using a block-removed UNet [1, 8] and de-
coding by the pretrained tiny VAE [4, 16]. We observe that,
with similar parameter numbers and inference speed, apply-
ing block removal results in a noticeable performance loss
of 0.0083 and 0.0084 in LPIPS and DISTS, respectively.
While the use of tiny VAE decoder can lead to reductions of
12M parameters and 0.01s in inference time, it substantially
degrades performance by 0.0297 and 0.0161 in LPIPS and
DISTS. This may be attributed to the reduced depth and the
absence of global receptive field in tiny VAE, which relies
solely on convolutions for decoding. These results validate
the effectiveness of our adopted feature channel pruning.

Effect of Various LoRA Ranks, and Fully Finetuning the

Table B.1. Ablation study of structural compression on DRealSR.

Method (UNet / VAE Decoder) LPIPS↓ DISTS↓ #Param.↓ Time↓
Block-Removed / Channel-Pruned 0.3129 0.2284 457 0.03
Channel-Pruned / Tiny VAE Dec. 0.3343 0.2361 444 0.02
Ch.-Pruned / Ch.-Pruned (Ours) 0.3046 0.2200 456 0.03

Table B.2. Ablation study of LoRA rank r and fully finetuning
(FT.) the first convolution layer for discriminator on RealSR.

Method DISTS↓ FID↓ MUSIQ↑ CLIPIQA↑
Fully Finetuning the Discriminator - (No Convergence)
r = 2 (w/o Fully FT. the 1st Layer) 0.2182 121.76 62.27 0.6056
r = 4 (w/o Fully FT. the 1st Layer) 0.2171 119.67 68.85 0.6195
r = 8 (w/o Fully FT. the 1st Layer) 0.2182 120.94 68.76 0.6114
r = 16 (w/o Fully FT. the 1st Layer) 0.2191 120.33 68.72 0.6173
r = 4 (w/ Fully FT. 1st Lyr.) (Ours) 0.2129 118.41 69.90 0.6731

First Layer for the Discriminator. Tab. B.2 compares var-
ious finetuning settings for discriminator. Fully finetuning
it can lead to unstable training without convergence. Com-
pared to the rank of 2, a rank of 4 achieves notable quality
gains of 0.0009, 2.09, 6.58, and 0.0139 in evaluation met-
rics DISTS, FID, MUSIQ, and CLIPIQA, respectively. In
contrast, higher ranks of 8 and 16 bring no evident improve-
ments. Furthermore, based on the rank of 4, fully finetuning
the first convolution layer further enhances performance by
0.0042, 1.26, 1.05, and 0.0536 in these four metrics. These
results validate the effectiveness of our default ADC setting.

C. More Comparison Results on Benchmarks
C.1. More Quantitative Comparisons
In Tab. C.2, we compare the proposed AdcSR model against
twelve state-of-the-arts, including four representative GAN-
based approaches: BSRGAN [29], Real-ESRGAN [19],
LDL [10], and FeMASR [3], as well as eight diffusion-
based methods [11, 18, 20, 23, 24, 26–28] across three syn-
thetic and real-world test datasets, evaluated using nine met-
rics [5–7, 17, 21, 25, 30, 31]. We observe that, firstly, the
traditional GAN-based approaches generally perform well
on reference-based metrics, particularly the fidelity mea-
sures PSNR and SSIM. Secondly, diffusion-based meth-
ods outperform these GANs in most perceptual quality met-
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Algorithm 1: Training and Inference of ADC

Input: Pretrained one-step teacher; Pretrained SD
models: VAE encoder ESD, VAE decoder
DSD, UNet ϵSD; Weighting factor λadv.

Stage 1: Pretraining Pruned VAE Decoder
Prune the SD VAE decoder DSD to obtain Dpruned;
Initialize Dpruned and a discriminator as in [9, 14];
for number of training iterations do

Sample a batch of images x;
Obtain latent codes z = ESD(x);
Reconstruct images x̂ = Dpruned(z);
Compute reconstruction loss [14] of x and x̂;
Update Dpruned using Adam optimizer;
Compute discriminator loss [14] of x and x̂;
Update discriminator using Adam optimizer;

Stage 2: Adversarial Distillation
Prune the SD UNet ϵSD to obtain ϵpruned;
Initialize the student model using ϵpruned and Dpruned;
Initialize a feature-space discriminator using ϵSD;
for number of training iterations do

Sample a batch of LR-HR pairs (xLR,xHR);
Compute features fstudent from student model;
Compute features fteacher from teacher model;
Compute distillation loss:

Ldistill = ∥fstudent − fteacher∥1

Compute adversarial loss:

Ladv = Softplus (−Discriminator(fstudent))

Compute total loss: L = Ldistill + λadvLadv;
Update student model using Adam optimizer;
Compute features fGT using xHR;
Compute discriminator loss:

Ldisc = Softplus (Discriminator(fstudent))

+ Softplus (−Discriminator(fGT))

Update discriminator using Adam optimizer;

Inference;
Given LR image input xLR;
return Super-resolved image x̂HR = Student(xLR);

rics, showing their ability to better generate natural textures.
Thirdly, AdcSR achieves competitive results, surpassing its
teacher OSEDiff in most cases, which validates the effec-
tiveness of ADC’s compression and adversarial distillation.

Figure C.1. 16 LR images from DIV2K-Val adopted in user study.

Table C.1. User study results of one-step diffusion-based methods.

Method SinSR OSEDiff S3Diff AdcSR (Ours)
Total Votes 35 149 168 160
Voting Rate (%) 7 29 33 31

C.2. More Qualitative Comparisons
Figs. C.2, C.3, and C.4 present visual comparisons across
super-resolution images produced by these approaches. We
observe that, firstly, GAN-based approaches generally show
weaker generative capabilities than diffusion-based meth-
ods, recovering fewer details overall. Secondly, traditional
multi-step SD-based methods generate rich details but may
introduce artifacts, such as those observed on the spiky tex-
ture of the inflated pufferfish by StableSR, DiffBIR, SeeSR,
and PASD. Thirdly, ResShift and SinSR tend to produce
oversmoothed results in areas of the leaves and red flower
petals, where the vein structures and textures are less dis-
tinct. This may be due to their lack of exploiting the pow-
erful SD priors. Fourthly, AdcSR demonstrates competitive
performance, generating natural and balanced details in the
pufferfish and leaves, comparable to OSEDiff and S3Diff,
which can subtly introduce an additional slight highlight ef-
fect on the cluster of leaves. These results comprehensively
confirm the effectiveness of our approach in compressing
SD-based models for Real-ISR while maintaining quality.

C.3. User Study
To further evaluate the effectiveness of our AdcSR, we con-
duct a user study comparing four one-step diffusion-based
Real-ISR methods, including SinSR, OSEDiff, S3Diff, and
AdcSR. We employ sixteen LR images from the DIV2K-
Val dataset, shown in a thumbnail form in Fig. C.1. Thirty-
two expert researchers are invited to choose the best super-
resolution image for each test sample based on two equally
weighted criteria: (1) perceptual quality, focusing on clarity,
detail, and realism, and (2) content consistency with the LR
input, including alignment in image structure and texture.

As reported in Tab. C.1, AdcSR achieves a high voting
rate of 31%, comparable to those of 29% and 33% obtained
by OSEDiff and S3Diff, both of which employ the complete
SD models. Although SinSR has fewer total parameters, its
super-resolution quality can be less favorable, as reflected
by a lower voting rate of 7%. These results validate that our
compressed diffusion-GAN hybrid maintains highly com-
petitive Real-ISR performance while achieving 4.3×, 3.7×,
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Table C.2. Quantitative comparison among thirteen different GAN-based and diffusion-based Real-ISR approaches on both syn-
thetic and real-world benchmarks. “S” denotes the required number of sampling steps in the diffusion-based method.

Test Dataset Method PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIQE↓ MUSIQ↑ MANIQA↑ CLIPIQA↑

DIV2K-Val

BSRGAN 24.58 0.6269 0.3351 0.2275 44.23 4.75 61.20 0.5071 0.5247
Real-ESRGAN 24.29 0.6371 0.3112 0.2141 37.64 4.68 61.06 0.5501 0.5277
LDL 23.83 0.6344 0.3256 0.2227 42.29 4.86 60.04 0.5350 0.5180
FeMASR 23.06 0.5887 0.3126 0.2057 35.87 4.74 60.83 0.5074 0.5997
StableSR-S200 23.26 0.5726 0.3113 0.2048 24.44 4.76 65.92 0.6192 0.6771
DiffBIR-S50 23.64 0.5647 0.3524 0.2128 30.72 4.70 65.81 0.6210 0.6704
SeeSR-S50 23.68 0.6043 0.3194 0.1968 25.90 4.81 68.67 0.6240 0.6936
PASD-S20 23.14 0.5505 0.3571 0.2207 29.20 4.36 68.95 0.6483 0.6788
ResShift-S15 24.65 0.6181 0.3349 0.2213 36.11 6.82 61.09 0.5454 0.6071
SinSR-S1 24.41 0.6018 0.3240 0.2066 35.57 6.02 62.82 0.5386 0.6471
OSEDiff-S1 23.72 0.6108 0.2941 0.1976 26.32 4.71 67.97 0.6148 0.6683
S3Diff-S1 23.52 0.5949 0.2581 0.1725 19.66 4.74 68.01 0.6318 0.7012
AdcSR-S1 (Ours) 23.74 0.6017 0.2853 0.1899 25.52 4.36 68.00 0.6090 0.6764

DRealSR

BSRGAN 28.75 0.8031 0.2883 0.2142 155.63 6.52 57.14 0.4878 0.4915
Real-ESRGAN 28.64 0.8053 0.2847 0.2089 147.62 6.69 54.18 0.4907 0.4422
LDL 28.21 0.8126 0.2815 0.2132 155.53 7.13 53.85 0.4914 0.4310
FeMASR 26.90 0.7572 0.3169 0.2235 157.78 5.91 53.74 0.4420 0.5464
StableSR-S200 28.03 0.7536 0.3284 0.2269 148.98 6.52 58.51 0.5601 0.6356
DiffBIR-S50 26.71 0.6571 0.4557 0.2748 166.79 6.31 61.07 0.5930 0.6395
SeeSR-S50 28.17 0.7691 0.3189 0.2315 147.39 6.40 64.93 0.6042 0.6804
PASD-S20 27.36 0.7073 0.3760 0.2531 156.13 5.55 64.87 0.6169 0.6808
ResShift-S15 28.46 0.7673 0.4006 0.2656 172.26 8.12 50.60 0.4586 0.5342
SinSR-S1 28.36 0.7515 0.3665 0.2485 170.57 6.99 55.33 0.4884 0.6383
OSEDiff-S1 27.92 0.7835 0.2968 0.2165 135.30 6.49 64.65 0.5899 0.6963
S3Diff-S1 27.39 0.7469 0.3129 0.2108 119.21 6.17 64.16 0.6081 0.7156
AdcSR-S1 (Ours) 28.10 0.7726 0.3046 0.2200 134.05 6.45 66.26 0.5927 0.7049

RealSR

BSRGAN 26.39 0.7654 0.2670 0.2121 141.28 5.66 63.21 0.5399 0.5001
Real-ESRGAN 25.69 0.7616 0.2727 0.2063 135.18 5.83 60.18 0.5487 0.4449
LDL 25.28 0.7567 0.2766 0.2121 142.71 6.00 60.82 0.5485 0.4477
FeMASR 25.07 0.7358 0.2942 0.2288 141.05 5.79 58.95 0.4865 0.5270
StableSR-S200 24.70 0.7085 0.3018 0.2288 128.51 5.91 65.78 0.6221 0.6178
DiffBIR-S50 24.75 0.6567 0.3636 0.2312 128.99 5.53 64.98 0.6246 0.6463
SeeSR-S50 25.18 0.7216 0.3009 0.2223 125.55 5.41 69.77 0.6442 0.6612
PASD-S20 25.21 0.6798 0.3380 0.2260 124.29 5.41 68.75 0.6487 0.6620
ResShift-S15 26.31 0.7421 0.3460 0.2498 141.71 7.26 58.43 0.5285 0.5444
SinSR-S1 26.28 0.7347 0.3188 0.2353 135.93 6.29 60.80 0.5385 0.6122
OSEDiff-S1 25.15 0.7341 0.2921 0.2128 123.49 5.65 69.09 0.6326 0.6693
S3Diff-S1 25.19 0.7315 0.2707 0.1994 110.34 5.33 67.92 0.6398 0.6761
AdcSR-S1 (Ours) 25.47 0.7301 0.2885 0.2129 118.41 5.35 69.90 0.6360 0.6731

Table C.3. Efficiency comparison on a flagship mobile device,
Qualcomm SM8750 (Snapdragon 8 Gen 4), for super-resolving
an LR input image of size 128× 128 with a scaling factor of 4.

Method Latency (ms)↓ Memory (MB)↓ Storage (MB)↓
OSEDiff 1647 1777 1693
AdcSR (Ours) 65 510 435
Reduction Rate (%) 97 71 74

and 9.3× faster inference than SinSR, OSEDiff, and S3Diff,
respectively, and reducing computation by 81%, 78%, and
81% in GMACs, thus verifying its appealing efficiency.

D. Efficiency Evaluation on Mobile Device

We conduct an efficiency comparison of the proposed Ad-
cSR method against its teacher model, OSEDiff, on a flag-
ship mobile platform, Qualcomm SM8750 (Snapdragon 8
Gen 4) [13], utilizing the Hexagon Digital Signal Proces-
sor (DSP). All models are evaluated using the Qualcomm
AI Engine Direct Software Development Kit (SDK) [12]
with 8-bit weights and 16-bit activations (W8A16) quanti-
zation for fair comparison. The results reported in Tab. C.3
demonstrate that AdcSR significantly outperforms OSED-
iff in both speed and resource efficiency. Specifically, Ad-
cSR achieves a 25× acceleration in inference latency, re-
duces memory footprint by 71% (from 1.7GB to 0.5GB),
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Input BSRGAN Real-ESRGAN LDL FeMASR StableSR DiffBIR

SeeSR PASD ResShift SinSR OSEDiff S3Diff AdcSR (Ours)

Figure C.2. Qualitative comparison of different approaches on an image named “0835 pch 00017” from the DIV2K-Val [18] dataset.

Input BSRGAN Real-ESRGAN LDL FeMASR StableSR DiffBIR

SeeSR PASD ResShift SinSR OSEDiff S3Diff AdcSR (Ours)

Figure C.3. Qualitative comparison of different approaches on a real-world image named “DSC 1599” from the DRealSR [22] dataset.

Input BSRGAN Real-ESRGAN LDL FeMASR StableSR DiffBIR

SeeSR PASD ResShift SinSR OSEDiff S3Diff AdcSR (Ours)

Figure C.4. Qualitative comparison of different approaches on a real-world image named “Nikon 013” from the RealSR [2] dataset.

and decreases storage requirements by 74% (from 1.7GB to
0.4GB). These savings are substantial for practical deploy-
ment on mobile devices, where resources are typically con-
strained. To summarize, AdcSR advances beyond previous
SD-based one-step Real-ISR models, providing a more ef-

ficient, cost-effective solution for real mobile applications.
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