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6. Implementation Details of ACP
In this section, we provide implementation details of ACP.
Following our pipeline, we introduce details of Data Priors
in Sec. 6.1, Scene Graph Generator in Sec. 6.2, Image Gen-
erator in Sec. 6.3, and Image Filter in Sec. 6.4.

6.1. Data Priors
Data Priors Construction. Data Priors P is constructed
from open-source datasets DP , where each sample contains
an image caption and associated annotations. We use LLMs
to parse each caption and extract object combination (si, oi)
along with their relationship ri, forming {(si, oi), ri}Ni=1.
For each extracted item {(si, oi), ri}, we retrieve the corre-
sponding bounding boxes from annotations as (ls, lo)ik. By
iterating over the entire DP , we gather all relevant layout
pairs corresponding to {(si, oi), ri} into a list Li. Thus,
each data prior is formulated as pi = ((si, oi), ri, Li),
aligning with Eq. 1.
Reference Layouts Selection from Data Priors. Refer-
ence layouts selection is based on the object combination
(s, o) and their relationship r. We extract reference layouts
from P that share the same category and relationship.

6.2. Scene Graph Generator
Choice of LLMs. We conduct experiments using a series
of LLMs as the scene graph generator in our ACP pipeline
on a limited data scale. Specifically, we employ Qwen-1.5-
14B, Qwen-1.5-72B, and Qwen-1.5-110B to generate scene
graphs. Each model produces 15K training examples from
the same input object lists. These examples are then amal-
gamated with the original training data for COCO detection
tasks. We apply them separately to a Mask R-CNN baseline
under a standard 1× training schedule. Table 7 illustrates
that the performance of different LLMs is comparable in
downstream tasks. We opt for the smaller LLM, Qwen-1.5-
14B, for the experiments described due to its faster infer-
ence speed.
Prompts. We provide our full prompts for the scene graph
generator, including the description generator and layout
generator.
Details of Layout Generation. We derive the input from
the previous description and prompt LLMs to generate a
layout for each object. The input follows a dictionary
format, e.g., {”objects”: [”xx-1”, ”xx-2”, ”xx-3”], ”cap-
tion”: ”xxx”}, and the output is a list of dictionaries, e.g.,
[{”object”: ”xx-1”, ”layout”: [x,y,w,h]}]. The Raw Layout

Table 7. Different LLMs as scene graph generator in ACP on
COCO detection task.

Scene Graph Generator APmask↑ APbox↑
Qwen1.5-14b 34.5 37.8
Qwen1.5-72b 34.5 37.8
Qwen1.5-110b 34.2 37.7

in Fig 3(a) represents the complete image layout, encom-
passing all object layouts for single-image generation.

Prompt for Description Generator:
Task Description:
Your task is to generate a detailed description
based on an object list. The description should
be a structured representation of a scene detailing
its various elements and their relationships. The
description consists of: 1. attributes of objects:
The attributes should be descriptive of the color or
texture of the corresponding object. 2. Groups: A
group of objects exhibit strong spatial relationships
that interact with each other. 3. Relationships:
This section illustrates the interactions or spatial
relationships between various objects or groups.
4. Caption: Caption should be a simple and
straightforward 2-4 sentence image caption. Please
include all the objects in the caption and refer to
them in ’()’. Create the caption as if you are directly
observing the image. Do not mention the use of
any source data. Do not use words like ’indicate’,
’suggest’, ’hint’, ’likely’, or ’possibly’.

You can refer to the following examples as
references.
In-context learning examples for Description
Generator

Please provide a json format with Description
based on the following object list.



Figure 9. Score distributions of Ssize, Sdist, Sdir , and CLIS-L.

Prompt for Layout Generator:
Task Description:
Your task is to generate a layout based on a detailed
description. The layout is a list of json with ’object’
and ’bbox’. ’object’ refers to the object name in
the prompt provided, while ’bbox’ is formulated
as [x,y,w,h], where ”x,y” denotes the top left
coordinate of the bounding box. ”w” denotes the
width, and ”h” denotes the height. The bounding
boxes should not go beyond the image boundaries.
The six values ”x,y,w,h,x+w,y+h” are all larger than
0 and smaller than 1.

You can refer to the following examples as
references.
In-context learning examples for Layout Generator

Please provide a json format with Layout based on
the following prompt.

6.3. Image Generator
We use InstanceDiffusion [74] as the image generator. We
follow the default settings of SDXL used in InstanceDif-
fusion to refine synthetic images for our image generator.
Regarding the number of synthetic images, we follow the
approach used in StableRep [69] and SynCLR [68], gener-
ating four images for each scene graph.

6.4. Image Filter
For caption model FC in Eq. 9, we adopt a pre-trained
VLM, Qwen-VL [1], which has strong perception abilities.
For Fsim function in Eq. 9, we prompt an LLM to assign
a score based on text similarity. Unlike direct comparisons
of text embeddings, LLMs can weigh different parts of the
descriptions according to their significance. For instance, a
mismatch in categories results in a lower score than a mis-
match in attributes.

Prompt for Caption Model:
You are my assistant to evaluate the correspondence
of the image to a given text prompt.
Briefly describe the image within 50 words. Focus
on the objects in the image and their attributes (such
as color, shape, texture), spatial layout, and action
relationships.

Prompt for Similarity Compution:
You are an intelligent chatbot designed to evaluate
the correctness of generative outputs for question-
answer pairs.
Your task is to compare the predicted answer with
the correct answer and determine if they match
correctly based on the objects, and their actions,
relationships. Here’s how you can accomplish the
task:
——
##INSTRUCTIONS:
- Focus on the objects mentioned in the description
and their actions and relationships when evaluating
the meaningful match.
- Consider synonyms or paraphrases as valid
matches.
- Evaluate the correctness of the prediction com-
pared to the answer.

Please Evaluate the following answer pair:

Correct Answer: answer
Predicted Answer: pred

Provide your evaluation in the JONSON for-
mat with the ’score’ and ’explanation’ key. The
score is an integer value between 0 and 5, with
5 indicating the highest meaningful match. The
explanation should be within 20 words.



7. Deployment Details on Downstream Tasks

7.1. Templates for Multi-modal Downstream Tasks

Localization:
Question:
1. Where is the object described {attribute} located
in the image in terms of the bounding box?
2. What is the location of object described
{attribute} in terms of the bounding box?
3. Localize the object described {attribute} in
terms of bounding box.
4. Provide a bounding box for the object described
{attribute}.
5. Generate a bounding box for the object described
{attribute}.
6. Describe the object located at {layout}.
7. Provide a caption for the object at {layout}.
8. What is at location {layout} in image?
Answer:
1-5: It is located at {layout}.
6-8: There is a {attribute}.

Attribute-binding:
Question:
1. What is the color of {obj}?
2. What color is the {obj}?
3. What color do you think the {obj} is?
4. Which color is the {obj}?
5. What is the number of {obj}?
6. What is the total count of {obj} in the image?
Answer:
1-4: {color}.
5-6: {number}.

Relation:
Question:
What is the relationship between the subject
described {attribute1} and the object described
{attribute2}?
Answer:
{subject} {relation} {object}.

We provide templates for constructing question-answer
pairs for multi-modal downstream tasks. For perception,
we design two types of tasks: localization and attribute-
binding. Localization tasks necessitate that models pinpoint
an object detailed in the instructions or, alternatively, de-
scribe an object situated at a specific location. Attribute-
binding tasks require models to identify precise attributes
of an object within a given location or give a precise num-
ber of the target object. For reasoning, we craft relation
reasoning tasks. These tasks require models to deduce the

relationship between a specified subject and object based on
the provided description.

7.2. CLIS Settings
CLIS-L Computation. We detail CLIS-L computation as
follows:
• Penalty Function. To filter out noise data identified by a
low score in any of the three metrics, Ssize, Sdist, and Sdir,
we introduce a penalty function f and a score threshold t.
The function f is a linear transformation that maps scores
below t from 0 to t to a range of −1 to t.
• Weight. To balance the impact of the three metrics (size,
distance, and direction) in Eq. 4, we apply Z-score normal-
ization to each. The distribution of scores across these three
metrics and CLIS-L is shown in Fig. 9.
• Percentile Operation. We use percentile operation in
Eq. 4. We first compare the percentile operation with the
average operation. Given that multiple reasonable layouts
can correspond to the same description, not all layouts from
the data priors P provide the necessary information for ac-
curate assessment. For example, in the description ’a per-
son holds an umbrella’, it would be unreasonable to evalu-
ate a synthetic layout where the umbrella is in the person’s
right hand using ground truth layouts from P where the
umbrella is in the left hand. To compare these two opera-
tions quantitatively, we conduct experiments. We construct
a test set of 10K samples generated by ACP, each contain-
ing two objects in the scene graph. We first swap the lay-
outs of the two objects to determine if CLIS-L can assign
a higher score to the original layout. Additionally, assum-
ing that good layouts can produce better images, we com-
pare the images selected by the two different CLIS-L cal-
culation methods. Specifically, we use these two methods
to independently select the top 25% highest-scoring data
(2.5K examples) and calculate the FID score for the corre-
sponding images. Table 8 shows that percentile operation in
CLIS-L outperforms average operation. We then compare
the percentile operation with the max operation. Since we
use LLMs to construct data priors P , it may cause some er-
rors in P . Thus, percentile operation is more robust against
similar errors in synthetic layouts.
CLIS Distribution and Setting. For visual perception
tasks, we emphasize image quality by applying a threshold
to CLIS-I. Specifically, we set an instance-level threshold of
60. Images in which all instances fall below this threshold
are excluded from the training set. Fig. 10 shows the orig-
inal distribution of instance-level CLIS-I (left) and overall
CLIS-I (middle), as well as the distribution of CLIS-I after
filtering (right). The instance filtering ratio is approximately
50%, while the image filtering ratio is around 15%. For
multi-model perception and reasoning tasks, we apply both
a threshold for CLIS-I and an additional threshold of 50 for
CLIS-L to ensure the generated layouts are reasonable. The



Figure 10. Score distribution of CLIS-I.

Table 8. Comparison of Max operation and Average operation in
CLIS-L.

Operation Accuracy↑ FID↓
Average 58.8 61.4
Percentile 61.0 55.5

CLIS-I threshold remains consistent with that used in visual
perception tasks.

8. Details of Experiments Setup
8.1. Baseline Settings
Our specific baseline settings in experiments are as follows:
• Mask R-CNN baseline. We follow the same setup out-
lined in [19]. Specifically, we adopt ResNet-50 [23] with
FPN [48] backbone, using the standard 1× training sched-
ule.
• CenterNet2 baseline. We follow the setup outlined
in [87]. Specifically, we use two configurations: 1) ResNet-
50 with a 1× training schedule, and 2) Swin-B with a 4×
training schedule. We employ the AdamW optimizer and
utilize repeat factor sampling with an oversample threshold
of 10−3.
• Grounding-DINO baseline. We follow the setup outlined
in [88]. Specially, we use the model pretrained on Ob-
jects365 [62], GoldG [35], GRIT [55], and V3Det [72] with
Swin-T [51] as the backbone. The fine-tuning process uses
the standard 1× training schedule. We use AdamW [52] op-
timizer with a weight decay of 0.0001. The initial learning
rate is 0.00005, dropped by 10× at the 8th and 11th epochs.
• LLaVA-v1.5 baseline. We follow the setup outlined in
[46]. We adopt a two-stage training process. For the
LLM backbone, we adopt Vicuna-7B [10], Vicuna-13B,

(a) Ground truth layouts (b) Synthetic layouts 

Figure 11. Comparison between ground truth layouts and syn-
thetic layouts from our layout generator.

and LLama-3-8B [70]. We use an AdamW optimizer with
a weight decay of 0. Pre-training for 1 epoch with a 1e-
3 learning rate and batch size of 32, and fine-tuning for 1
epoch with a 2e-5 learning rate and a batch size of 16. The
warmup ratio of the learning rate is 0.03.
• Stable Diffusion baseline. We use the v1-5 model weight
from Huggingface [75].

8.2. Training Settings
We augment the original training set with synthetic exam-
ples to co-train downstream models, while annotations for
rare categories are excluded in the open-vocabulary setting.



Caption: A middle-aged man is walking with a small brown dog beside him.

A middle-aged man

A small brown dog
A zebra with black and white stripes

A zebra with black
and white stripes

A zebra with black
and white stripes

Caption: Three zebras are standing close to each other in a field.

(A) (B)

A white cup with a handle

A green potted plant

A wooden table
A brown sofa

A black chair

Caption: A white cup and a green potted plant sit on a wooden table. Beside the 
table, there is a brown sofa and a black chair.

(C)

Caption: On a wooden bookshelf, there are two cups beside two sofas, with a
small potted plant next to the sofas.

A white ceramic cup
A white porcelain cup

A small potted plant

A wooden bookshelf

A brown leather sofa
A beige fabric sofa

(D)

Figure 12. Error analysis of ACP. (A) Numerous objects and (B) overlapping objects for the image generator. (C)(D) complex object
combinations for the scene graph generator.

8.3. Evaluation Protocols

For generative metrics, FID is computed with the Inception
V3 [66]. We adopt a pre-trained YOLOv8m following [74]
for YOLO score [41] and report the standard average pre-
cision (AP), which is averaged at different IoU thresholds
(from 0.5 to 0.95) across categories.

8.4. Dataset Details

MS-COCO is a common detection dataset containing 80
categories with 118K training images and 5K validation im-
ages. In the open-vocabulary setting [3], MS-COCO can be
divided into 48 base categories and 17 novel categories, ex-
cluding 15 categories without a synset in the WordNet hier-
archy.

LVIS is a large vocabulary dataset with 1203 categories,
featuring a long-tailed distribution of instances in each cat-
egory. These categories can be divided into rare(337), com-
mon(461), and frequent(405) groups. LVIS training set con-
tains 100K images, with an additional 20K images in the
validation set.

The original instruction-following data mixture of
LLaVA-1.5 is a total of 665K [46].

9. Limitations and Future Work

Sampling of initial object combinations and evaluating
layouts necessitates data priors P , which are resource-
intensive to construct. Currently, P is built from the COCO,
LVIS, and Filter30K datasets. However, practical limi-
tations in computational resources constrain our capacity
to expand P , potentially impacting the accuracy of layout
evaluation. Generating high-quality samples through ACP
is also computationally demanding, with a portion of syn-
thetic samples to be filtered out. A future research direc-
tion involves developing computation-efficient methods to
generate high-quality samples or devising strategies to learn
from low-quality samples efficiently.

Additionally, simple experiments presented in Table 8
and Fig. 1(a,b) indicate that better layouts contribute to im-
proved image quality. Thus, another potential direction for
future work is to use layout metrics to optimize computa-
tional resources in the generation process. We encourage
more future studies focusing on the design of generation
metrics.



10. Consistency with Human Preference
In Fig. 5, we present images generated from the same scene
graph. The image quality consistently improves as the CLIS
increases, confirming its alignment with human judgment.
To comprehensively evaluate consistency with human pref-
erences, we additionally carry out a user study with 20 sub-
jects. Each subject is shown 40 pairs of images, with each
pair generated from the same scene graph with different
CLIS scores. The subjects are asked to evaluate the image
pairs based on the following criteria:
• Q1. choose the image that has the best visual quality.
• Q2. choose the image that is better aligned with the an-
notation, including bounding boxes and text descriptions.
A total of 1535 responses are collected. The results show
that samples with higher CLIS get 66.1% for Q1 and 94.7%
for Q2. This indicates that higher CLIS aligns well with hu-
man judgments on visual quality and annotation alignment.

11. Efficiency-Effectiveness Analysis
ACP demonstrates its efficiency: (1) Detectors efficiently
utilize synthetic samples from ACP. For instance, X-Paste
uses 100K synthetic images, double the size of ACP’s syn-
thetic dataset. (2) Synthetic data from ACP is richly anno-
tated with detailed object attributes and relationships, mak-
ing it readily applicable to various downstream tasks. (3)
ACP significantly reduces the cost of data generation com-
pared to manual collection and annotation, particularly for
rare categories.

12. Error Analysis
Synthetic errors may arise in large-scale generation due to:
• Scene Graph Generator. LLMs often struggle with rare or
complex object combinations, leading to inaccurate layouts.
• Image Generator. Diffusion models frequently fail when
objects overlap or when rendering a large number of ob-
jects.
As shown in Fig. 12, errors in (C) and (D) originate from
the scene graph generator. When confronted with complex
object combinations, LLMs may generate implausible lay-
outs. For instance, in (C), the cup and plant should appear
on the wooden table, and in (D), the two cups belong on
the bookshelf. Errors in (A) and (B) arise from the image
generator. Diffusion models tend to struggle when handling
(A) numerous objects or (B) overlapping objects.

13. Visualization Results
13.1. Ablation Study on Layout Generator
We present visualizations of images generated using both
ground truth layouts and synthetic layouts. As shown in
Fig. 11, images generated with synthetic layouts exhibit

comparable or even better to those generated with ground
truth layouts. Notably, ground truth layouts tend to overlap
more, leading to low-quality results from diffusion models.
Furthermore, synthetic layouts are more likely to be cen-
tered in the images, which helps reduce the occurrence of
distracting objects in the generated images.

13.2. Comparison with Other Metrics
CLIS-I. We provide visual results comparing CLIS-I with
other metrics. Using the same scene graph from the pre-
vious generator, we produce images evaluated with CLIS-I
and other metrics, such as CLIP and YOLO scores. As illus-
trated in Fig 13, CLIS-I demonstrates superior performance
in both textual alignment and visual quality.
CLIS-L. We further present visual comparisons of CLIS-L
with the spatial detection-based HRS metric [2], similar to
those used in T2I-CompBench [31], which applies prede-
fined rules to evaluate fix spatial relationships. To ensure
that the relationships being evaluated are spatial and com-
patible with the HRS metric, we use the HRS spatial com-
positions benchmark [2]. As shown in Fig 14(A), CLIS-L
aligns with the HRS metric in evaluating typical spatial re-
lationships. Both assign high scores to accurate spatial lay-
outs. Fig. 14(B) highlights the advantage of CLIS-L, which
assigns low scores to unrealistic or inaccurate spatial lay-
outs, demonstrating its superiority in filtering suboptimal
cases. Notably, CLIS-L can also evaluate non-spatial lay-
out relationships, further showcasing its versatility.

13.3. Synthetic Training Examples
Additionally, we showcase visualizations of our synthetic
training samples in Fig. 15 and Fig. 16. By leveraging the
extensive vocabulary of large generative models, we can
produce high-quality training samples for rare categories.
These training samples are closely aligned with their re-
spective scene graphs, capturing both detailed attribute de-
scriptions and complex relationships between multiple ob-
jects effectively.



Figure 13. Comparison between CLIS-I and other prevalent metrics. Each pair of images is generated on the same scene graph, with CLIS-I
favoring the right image in each pair. In (a) and (b), the CLIP score overlooks the extraneous elephant on the left and the inaccurate spatial
arrangement between the chair and bed, respectively. For (c) and (d), the YOLO score fails to assess the detailed attributes or evaluate the
semantic relationships between objects.



Prompt: a cat on the right of a chair and on a horse

chair
cat

horse

Prompt: a person and a dog among a chair and a horse

horse
person

dog
chair

cat

horse

Prompt: a horse above a cat

cat

person

Prompt: a cat over a person

(A)

(B)

Figure 14. Comparison of CLIS-L and the HRS metric. (A) CLIS-L is consistent with the HRS metric in evaluating typical spatial relations.
Both assign high scores to accurate spatial layouts. (B) CLIS-L provides additional filtering capability for problematic cases. For instance,
the prompt ’A horse above a cat’ is unreasonable in real-world scenarios. ’A cat over a person’ is inaccurate as the cat should be positioned
higher in the layout.

Figure 15. Synthetic training examples from ACP. In settings with imbalanced training data, such as long-tail scenarios, ACP can produce
high-quality training examples for rare categories to mitigate this challenge. Additionally, ACP can generate diverse training samples with
detailed attributes and relationships within complex scenes.



Attributes: ["a 
small yellow bird”, 
"a red cardinal”, "a 
blue jay”, "a green 
parakeet"]

Attributes: ["a 
majestic chestnut-
colored horse", "a 
sleek black horse"]

Attributes: ["a 
small brown and 
white puppy, "a 
larger brown dog”, 
"a cozy beige sofa", 
"a blue velvet sofa”]

Q1: Describe the object located at 
<location1>.

A1: There is a red cardinal.

Q2: Where is the object described a 
blue jay located in the image in 
terms of bounding box?

A2: It is located at <location2>.

1

2

1 2
Q1: What is the color of the horse 
at <location1>?

A1: Chestnut-colored.

Q2: What color is the horse at 
<location2>?

A2: Sleek black.

Q1: What is the number of dog?

A1: Two.

Q2: What color is the sofa at 
<location1>?

A2: Blue.

1

CLIS

Task

[‘horse’] x 4

[‘ferret’] x 2

[‘suitcase’] x 6

Annotations:

[‘ferret’: <segmentation 
mask>] x 2

Annotations:

[‘horse’: <segmentation 
mask>] x 4

Annotations:

[‘suitcase’: 
<segmentation mask>] x 6

A-1

Attributes: [“a small 
golden retriever”, “a man 
wearing a blue t-shirt”]

Relation: {“subject”: 
“dog”, “object”: “person”, 
“relation”: “playing 
fetch with”}

Attributes: [“a soft blue
cushion”, “a beige sofa 
with wooden legs”]

Relation: {“subject”: 
“cushion”, “object”: 
“sofa”, “relation”: 
“placed on”}

Q1: What is the relationship between 
the man and the dog?

A1: A small golden retriever is 
playing fetch with a man wearing a 
blue t-shirt. 

Q1: What is the relationship between 
the sofa and the cushion?

A1: A sofa blue cushion is placed on 
a beige sofa with wooden legs.

Attributes: [“a man in a 
wetsuit”, “a colorful 
parasail being held by a 
harness”]

Relation: {“subject”: 
“man”, “object”: 
“parasail”, “relation”: 
“hold”}

Q1: What is the relationship between 
the man and the parasail?

A1: A man in a wetsuit holds onto a 
colorful parasail by a harness.

A-2

B-1

B-2

[‘cup’, ‘cup’, 
‘plant’, ‘table’, 
‘sofa’, ‘sofa’]

Annotations:

[‘cup’: <bounding
box>] ……

Annotations:

[‘urinal’: <bounding
box>] x 2

[‘urinal’] x 2

[‘zebra’] x 3
Annotations:

[‘zebra’: <bounding box>] 
x 3

Figure 16. Synthetic training samples of various tasks from ACP. Tasks A-1 and A-2 correspond to Segmentation and Detection, respectively. Tasks B-1
and B-2 pertain to multi-modal perception and reasoning. Given the same input or scene graph on the left, the CLIS of the synthetic training samples
increases along the x-axis, with final annotations on the right.
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