
CADCrafter: Generating Computer-Aided Design Models from Unconstrained
Images

Supplementary Material

6. Supplementary Materials

We have prepared supplementary materials. The technical
details of our implementation are discussed in Sec. 7 and
Sec. 8. Moreover, we present additional examples and com-
parisons in Sec. 9 to demonstrate the performance of our
method.

7. Technical Details

7.1. CAD Commands Encoding

We define the CAD command sequence following Deep-
CAD [37], focusing on the two commonly used categories:
sketch and extrusion, where sketch includes commands
start{⟨SOL⟩}, line{L}, arc{A}, and circle{R} and ex-
trusion has a single command E, we also need an end com-
mand ⟨EOS⟩ for the entire command sequence. Each com-
mand is defined by a few parameters for their location,
size, and orientation. The detailed definitions of the pa-
rameters are given in Table 4. For the i-th line of com-
mand Ci = (si, pi), where si is the command type and we
stack all the parameters for all command types into a vector
pi = [x, y, α, f, r, θ, ϕ, γ, px, py, pz, s, e1, e2, b, u], setting
unused parameters to −1. We then pad the sequence to a
fixed length, Nc = 60, using the empty command ⟨EOS⟩.

Commands Parameters
⟨SOL⟩ ∅
L

(Line)
x, y : end-points of line

A

(Arc)

x, y : end-points of arc
α : sweep angle
f : flag for counter-clockwise

R

(Circle)
x, y : center of circle

r : radius of circle

E

(Extrude)

θ, ϕ, γ : orientation of sketch plane
px, py, pz : origin of sketch plane

s : associated sketch profile scale
e1, e2 : extrude distances toward both sides

b : bool type, u : extrusion type
⟨EOS⟩ ∅

Table 4. The CAD commands and parameters defined in Deep-
CAD [37] convention.

7.2. CAD Autoencoder

Our autoencoder architecture is similar to [37]. We for-
mulate the task as a classification problem to simplify the
learning process. We normalize all CAD models and quan-
tize the continuous parameters into 256 levels represented
as 8-bit integers. Therefore, each parameter pi,j where
j ∈ {1 · · · 16} is represented by a one-hot embedding of di-
mension 256+1 = 257 with an additional element reserved
for unused parameters. We tokenize the commands by map-
ping them to embedding spaces with learnable matrices, the
resulting embedding e(Ci) = ecmd

i + eparam
i + epos

i ∈ RdE ,
where epos

i is a learnable positional embedding and dE =
256 is the embedding dimension. The embedding is passed
through four layers of transformer blocks and we take the
averaged outputs as the latent vector z with the same dimen-
sion dE = 256. Then, we reconstruct the CAD command
sequence from the latent vector z through a decoder with the
same structure as the encoder followed by two linear predic-
tion heads for commands si and parameters pi. The training
objective of the autoencoder is to learn accurate predictions
of CAD parameters and to regularize the latent space. The
training loss is defined as a cross-entropy loss between the
predicted Ĉ and ground-truth C.

7.3. Discussion on Regularization of Autoencoder.

In addition to the reconstruction loss mentioned above, to
further regularize the generated latent space, we have also
experimented with different regularization terms. For ex-
ample, we use the KL divergence as a regularization term:
lkl = DKL(q(z|Ci) ∥ p(z)). In this equation, DKL rep-
resents the Kullback-Leibler divergence, q(z|Ci) is the la-
tent distribution conditioned on the input Ci, and p(z) is
the prior distribution of the latent space. This regularization
term ensures that the encoded latent representation closely
approximates the predefined prior distribution, which is set
as a Gaussian distribution with zero mean and a standard
deviation of 0.25. We also utilize a constant β to ad-
just the strength of the regularization, setting its value to
1× 10−5. The VAE reconstruction results are shown in Ta-
ble 5, demonstrating that the model can reconstruct the se-
quence with high precision in both scenarios. The regular-
ization terms have minimal impact on the results. Moreover,
using the regularization term to train the diffusion model
does not result in improvements, so our AE is only trained
using the reconstruction loss. To obtain representations bet-
ter suited for latent diffusion, future work could potentially
increase the latent capacity, such as using a sequence of la-



Methods ACCcmd ↑ ACCpara ↑ Med CD ↓ IR ↓
AEw/o−Lkl

99.52 98.18 0.073 0.026
AEw−Lkl 99.32 98.02 0.075 0.027

Table 5. Quantitative evaluation of different autoencoding strate-
gies. The CD is multiplied by 102.

tent instead of a single latent.

7.4. Diffusion Transformer Network

Our diffusion transformer architecture follows DALLE-2
[25], comprising 12 blocks, each containing a self-attention
layer and a fully connected layer. During testing, we start
with a randomly sampled noise vector zT drawn from a
standard normal distribution N (0, I). Our diffusion model
is then iteratively applied to this vector to progressively de-
noise it, resulting in the final output z0. This process is
described by:

z0 = (f◦· · ·◦f)(zT , T, fm), f(xt, t) = Ω(xt, γ(t)|fm)+σtϵ,
(5)

where σt represents the fixed standard deviation at each
timestep t, and ϵ is sampled from N (0, I). We con-
tinue to denoise zT through successive iterations until z0
is achieved. The resulting latent vectors z0 are then fed into
the previously trained decoder to reconstruct the CAD se-
quence. We employ the DDPM solver [9]. Since our train-
ing objective function is to predict x0, we can rearrange the
equation of the forward diffusion process to compute ϵ from
x0. This allows us to predict the noise ϵ directly based on
the predicted x0.

8. Dataset Details

We render the compiled CAD models using Blender. To
provide comprehensive multi-view information while ac-
commodating our unconstrained testing scenario, for each
model, we generate eight sets of four-view images. In each
set, we sample four camera locations with mean azimuth
angles separated by 90 degrees, applying a random pertur-
bation within a 30-degree range to each azimuth. The four
views share the same randomly chosen elevation angle and
a radius sampled from 1.8 to 2.5 units. Additionally, for
each set, the CAD object is randomly rotated within a range
of -15 to 15 degrees along each axis.

While collecting our RealCAD dataset, the collector ca-
sually captured images of the object from approximately
four different angles: front-left, front-right, back-left, and
back-right. There were no specific requirements regarding
the elevation and radius for these shots. The 3D-printed
CAD models, featuring a variety of textures and colors,
were photographed under standard indoor lighting condi-
tions using iPhones.

Image Input Ours Ground Truth

Figure 8. More generated results on RealCAD dataset by our
method, the real images are shown on the left.

9. More Results

9.1. Multi-View Reconstruction Diversity

In Figure 7 of the main text, we showcase the diverse results
generated using a single view as input. In the single-view
setting, our model can produce results with varying levels
of complexity for the unseen parts of the object. This is
because, with only one view, the model infers the hidden
regions, leading to diversity in the generated outputs.

When we switch to the multi-view setting, the multi-
ple perspectives provide comprehensive information about
the object. Consequently, the generated results typically
present a complete reconstruction of the object’s shape, dif-
fering mainly in size. As shown in the upper part of Figure
9, we provide examples generated using multi-view inputs.
Across different sampling runs, our model consistently re-
covers the object’s shape. However, due to the inherent am-
biguity in the image data regarding object scale, the gen-
erated results exhibit variations in size. Additionally, our
method can generate various CAD design sequences for the



Figure 9. Diverse generated results with multi-view input. To sim-
plify, we use a single image to represent multi-view inputs. Our
model reliably captures geometric details, with occasional size
variations (upper part). It also generates diverse designs, such as
representing a circle as either a full circle or two semi-circular
curves (lower part).

Methods ACCcmd ↑ ACCpara ↑ Med CD ↓ IR ↓
CADCrafterzero123 63.89 42.98 0.201 0.466
CADCrafter 84.62 73.31 0.026 0.036

Table 6. Performance comparisons of the multi-view diffusion
model on the DeepCAD dataset.

same model. As shown in the lower part of Figure 9, the
generated circle may be represented as either a full circle or
two semi-circular curves.

9.2. Discussion on Multi-View Diffusion

In our architecture, we employ a distillation loss to enable
our single-view geometry encoder to learn from multi-view
knowledge. We have also explored an alternative approach
where a multi-view diffusion model is directly employed to
generate images from different views using a single-view
input. For this experiment, we fine-tune the Zero-1-to-3
model [18] using our rendered CAD image dataset. De-
spite this effort, the multi-view diffusion model struggled
to accurately capture geometry across different views, intro-
ducing noise during the conditioning process and ultimately
degrading overall performance. We quantitatively evaluate
this method on DeepCAD, and the results shown in Table 6
further underscore the necessity of our designs.

9.3. More Results on RealCAD

Here, we showcase more generated results on the RealCAD
dataset by our method in Figure 8. It can be observed that
our model handles different object poses and sizes effec-
tively. For instance, in the last row, even for very thin ob-
jects, the parameters are generated correctly.


