Collaborative Decoding Makes Visual Auto-Regressive Modeling Efficient

Supplementary Material

In this document, we provide supplementary materials that

extend beyond the scope of the main manuscript, con-

strained by space limitations. These additional materials

include:

* We provide more quantitative analysis results to further
illustrate our approach;

* We offer more qualitative comparisons for visualization;

* We discuss the limitations of our approach and look into
future work.

A. Additional Quantitative Results

In this section, we present additional quantitative analyses
to further substantiate our approach.

Impact of Increasing Model Parameters. To validate
Observation 1, we analyze the effect of varying model
sizes on class-conditional image generation quality using
ImageNet-256 [1]. Specifically, we evaluate the impact of
model size at the k-th scale by predicting the token map
r,, with four Visual Autoregressive (VAR) models [7] of
different parameter sizes (2B, 1B, 0.6B, and 0.3B). For
all other scales (r1,72,...,7%—1, Tk+1, - - - , T10), the largest
VAR-d30 model is used for generation. Detailed quantita-
tive results are summarized in Table 1. Our results reveal
that increasing model parameters at the earlier scales yields
significant improvements in generation quality. However,
as the scales progress, the marginal benefits of larger mod-
els diminish. At the final scale—responsible for 38% of
the sequence tokens—we observe that the performance of
the 2B model is nearly identical to that of the 0.3B model.
This indicates that as the predicted scale increases, the de-
mand for model parameters to ensure accurate token pre-
dictions decreases substantially. These findings highlight
significant computational redundancy in the current VAR
inference process at larger scales.

Training-Free Performance of CoDe. The proposed
CoDe framework employs a large drafter model in con-
junction with a smaller refiner model for progressive in-
ference. Notably, it can operate in a training-free manner
by leveraging pre-trained VAR-d30 and VAR-d16 models
as the drafter and refiner, respectively. Table 3 presents the
performance of training-free CoDe across various drafting
step settings N = {1, 2, 3,4,5,6,7,8,9}. Even without ad-
ditional training, CoDe achieves competitive performance,
surpassing the VAR-d24 and VAR-d20 models while main-
taining the same speedup ratio.

Image Quality Assessment. In our paper, we use stan-
dard metrics such as FID [3], Inception Score (IS), Preci-
sion, and Recall to evaluate the generation quality. In or-

Table 1. Impact of increasing parameters across scales

Scale Params‘ FID | IS 1 Precisiont Recallt

2 0.3B 223 291 0.8122 0.5895
2 0.6B 2.13 292 0.8078 0.5947
2 1.0B 2.04 295 0.8107 0.6027
2 2.0B 1.95 301 0.8107 0.5945
3 0.3B 2.35 283 0.8064 0.5864
3 0.6B 2.21 290 0.8047 0.5967
3 1.0B 2.09 295 0.8074 0.5940
3 2.0B 1.95 301 0.8107 0.5945
4 0.3B 2.27 290 0.8086 0.5953
4 0.6B 2.18 293 0.8068 0.5924
4 1.0B 2.13 296 0.8061 0.5983
4 2.0B 1.95 301 0.8107 0.5945
5 0.3B 2.17 296 0.8119 0.5936
5 0.6B 2.13 298 0.8087 0.5948
5 1.0B 2.10 301 0.8087 0.6025
5 2.0B 1.95 301 0.8107 0.5945
6 0.3B 2.09 301 0.8119 0.5984
6 0.6B 2.05 304 0.8100 0.5976
6 1.0B 2.05 305 0.8089 0.5999
6 2.0B 1.95 301 0.8107 0.5945
7 0.3B 2.09 302 0.8067 0.6010
7 0.6B 2.05 305 0.5095 0.6061
7 1.0B 2.04 307 0.8077 0.6008
7 2.0B 1.95 301 0.8107 0.5945
8 0.3B 2.08 304 0.8135 0.5978
8 0.6B 2.04 308 0.8110 0.6024
8 1.0B 2.02 307 0.8094 0.6038
8 2.0B 1.95 301 0.8107 0.5945
9 0.3B 2.02 304 0.8133 0.6059
9 0.6B 2.01 307 0.8121 0.5948
9 1.0B 2.00 307 0.8097 0.6011
9 2.0B 1.95 301 0.8107 0.5945
10 0.3B 1.99 306 0.8120 0.5978
10 0.6B 1.97 305 0.8102 0.6053
10 1.0B 1.98 303 0.8102 0.6053
10 2.0B 1.95 301 0.8107 0.5945

der to more comprehensively evaluate the quality of gener-
ated images, we introduced three image quality assessment
(IQA) metrics, including MUSIQ [4], CLIPIQA [8], and
NIQE [5]. MUSIQ, CLIPIQA, and NIQE are three distinct
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Figure 1. Up: images generated by the original VAR-d16 models. Down: images generated by the perturbation fine-tuned VAR-d16.

Table 2. No reference metrics for additional image quality assessments.

Inference Efficiency

Image Quality Assessment

Method ‘ ‘
‘ #Steps Speedupt Latency| Throughput{ #Param Memory ‘ MUSIQ 1T CLIPIQA1 NIQE|
VAR-d30 ‘ 10 1.0x 3.62s 17.71it/s 2.0B 40414MB ‘ 60.72 0.6813 6.1739
VAR-CoDe N=9 | 9+1 1.2x 2.97s 21.54it/s 2.0+0.3B 28803MB 60.78 0.6818 6.1024
VAR-CoDe N=8 | 8+2 1.7x 2.11s 30.33it/s 2.0+0.3B 21019MB 60.79 0.6812 6.0849
VAR-CoDe N=7 | 7+3 2.3x 1.60s 40.00it/s 2.0+0.3B 19943MB 60.82 0.6800 6.1247
VAR-CoDe N=6 | 6+4 2.9x 1.27s 50.39it/s 2.0+0.3B 19943MB 60.76 0.6808 6.1490

Table 3. The training-free performance of CoDe

Configuration ‘ FID | ISt Precision? Recallt

CoDe N=9 1.99 306 0.8120 0.5978
CoDe N=8 2.10 308 0.8155 0.5915
CoDe N=7 2.25 309 0.8204 0.5781
CoDe N=6 2.42 306 0.8283 0.5721
CoDe N=5 2.56 303 0.8313 0.5660
CoDe N=4 2.75 295 0.8342 0.5427
CoDe N=3 2.99 288 0.8410 0.5327
CoDe N=2 3.19 283 0.8433 0.5179
CoDe N=1 3.39 268 0.8132 0.5382

IQA metrics, each with unique approaches and strengths.
MUSIQ (Multi-Scale Image Quality) leverages a vision
transformer (ViT) [2] and a multi-scale representation to
evaluate global aesthetics and local distortions, making it
effective for diverse image types, including high-resolution
and non-standard aspect ratios. CLIPIQA utilizes the pre-
trained CLIP [6] model, which combines semantic under-
standing from large-scale image-text training to assess im-
age quality in a context-aware manner, excelling in tasks
aligned with human perception. In contrast, NIQE (Natural
Image Quality Evaluator) is a no-reference metric that mod-
els natural scene statistics (NSS) using a multivariate Gaus-
sian distribution to measure deviations from high-quality

natural image properties. While MUSIQ and CLIPIQA ex-
cel in leveraging learned features for state-of-the-art perfor-
mance, NIQE stands out for its simplicity, computational ef-
ficiency, and independence from reference images, though
it may struggle with unnatural or heavily edited content. To-
gether, these metrics cater to diverse IQA needs, from deep-
learning-based evaluations to lightweight statistical assess-
ments. As shown in Table 2, our CoDe method achieves
comparable or even superior generation quality compared
to the original VAR-d30. This result further demonstrates
the effectiveness of our approach.

B. More Qualitative Results.

Additional Qualitative Comparisons. We provide addi-
tional qualitative comparisons between the original VAR-
d30 model and our proposed CoDe framework, evaluated
with varying drafting steps N = {6,7,8,9}. As shown
in Figures 2 and 3, CoDe achieves significant speedup and
substantial memory optimization, with only minimal qual-
ity degradation that is nearly imperceptible to the human
eye. Even at a speedup rate of 2.9%, the generated im-
ages maintain exceptionally high quality and preserve ac-
curate semantic information. It is important to emphasize
that the primary goal of CoDe is to enhance the efficiency
of the VAR inference process while maintaining high gen-
eration quality, rather than reproducing the exact outputs
of the original model. Through specialized fine-tuning,



CoDe’s drafter model demonstrates superior predictive ac-
curacy compared to the original model, sometimes result-
ing in a different global structure. Nevertheless, the image
quality remains consistently high and, in some cases, even
improves over the original outputs.

Qualitative Results of Perturbation Fine-Tuning. In our
study, we conducted a perturbation fine-tuning experiment
to examine the distinct generative roles of small and large
scales. Using a pre-trained VAR-d16 model, we applied the
CSE loss exclusively to tokens in the largest three scales
and fine-tuned the model for just 1% of the original train-
ing epochs. This minimal fine-tuning at large scales caused
a complete collapse of the model’s global modeling capac-
ity at small scales, with the FID increasing from 3.30 to
21.93 and the IS score dropping from 277 to 88. Figure 1
illustrates the qualitative results of perturbation fine-tuning.
After slight fine-tuning, the VAR-d16 model nearly loses
its ability to model global structures. These findings under-
score that VAR models undertake entirely distinct genera-
tive tasks at small and large scales, with minimal overlap in
functionality.

C. Limitations and Future Work

Limitations. The core concept of CoDe involves decom-
posing the next-scale prediction process into a collaboration
between a large model and a small model. This approach
necessitates the availability of two models with different
sizes. If only a single large VAR model is available and
faster inference is desired, it becomes necessary to retrain
a smaller refiner model. However, since the refiner model
can be extremely compact, techniques such as model prun-
ing and knowledge distillation can be applied to limit the
additional training cost.

Future Work. This study demonstrates that CoDe signifi-
cantly reduces inference latency and memory consumption
for VAR models. Furthermore, the efficiency gains from
CoDe become even more pronounced in computationally
intensive scenarios. As a result, CoDe is particularly well-
suited for high-resolution image generation tasks based on
next-scale prediction. In future work, we aim to explore
the application of CoDe in building an efficient VAR model
specifically optimized for high-resolution image generation.
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Figure 2. Qualitative comparison between the original VAR-d30 model and our proposed CoDe model, with different drafting steps.
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Figure 3. Qualitative comparison between the original VAR-d30 model and our proposed CoDe model, with different drafting steps.
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