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Supplementary Material

1. More Details of CRA
1.1. Compare with previous work

There are two major differences between our method and
these works (i.g., SGAE [6] and NExT-OOD [7]).

1) Problem-solving. They address causality but focus
on QA accuracy. SGAE uses scene graphs for bias repre-
sentation, and NExT-OOD employs contrastive loss with-
out considering grammar. Our method explicitly integrates
causal intervention in Grounded VideoQA, aligning multi-
modal features with the grounded video feature vt to sup-
port task objectives.

2) Causality-reasoning. Existing methods rely on man-
ual annotations or pre-trained models for priors, such as
temporal labels. In contrast, our automated causal mod-
ule uncovers true causal effects from limited data. Conven-
tional methods involve complex training, limiting transfer-
ability, while our CRA is fully end-to-end and easily adapt-
able to different models.

Additionally, current works evaluate whether models can
effectively distinguish causality by introducing complex bi-
ases. Constructing unbiased datasets is challenging and
often unrepresentative of real-world scenarios. Therefore,
modeling on biased datasets provide a more practical and
effective way to validate debiasing methods.

1.2. Proof of Eq.9

P (a|do(V ), do(L)) can be presented as the following:

P (a|do(V ), do(L)) =

P (a|do(V ), do(L),M = vt)P (M = vt|do(V ), do(L))

(1)

where M is introduced by V and L, while L is decon-
founded and there is no back-door path between V and M .
Thus, Eq. 1 can be reformulated as:∑

vt

P (a|do(M = vt), do(L))P (M = vt|V, do(L)) (2)

which the probability of P (a|do(M = vt), do(L)) can
be formulated via back-door intervention applied at M ←
V ← Z → a as:∑
v̂

P (a|do(M = vt), do(L), V = v̂))P (V = v̂|do(M = vt))

=
∑
v̂

P (V = v̂)P (V = v̂,M = vt),

(3)

where v̂ is the feature selected from V to represent the over-
all distribution of the dataset. Combining Eq. 2 and Eq. 3,
we can further calculate Eq. 1 as:

P (a|do(V ), do(L) =∑
v̂

P (V = v̂)P (a|V = v̂,M = vt, do(L))∗∑
vt

P (M = vt|V = v, do(L))

(4)

where ∗ is the dot product, and the v̂ can be estimated from
the clusters center Ṽ of the frame features, embedded by
the CLIP model. Additionally, the LCI module explicitly
models the linguistic semantic relations through semantic
graphs and employs backdoor intervention to isolate the
influence of biased pathways, to focus on causal relations
rather than superficial features.

1.3. About GSG module

The GSG module generates the key video segment fea-
ture vt by denoising cross-modal attention with an adaptive
Gaussian filter, serving as the mediator for the ECI. In ECI,
vt applies front-door intervention to block confounders be-
tween the video and the answer, decomposing the causal
effect when computing P (a|do(V )). GSG’s temporal de-
noising ensures vt focuses on causally relevant scenes, en-
hancing visual-language alignment. ECI leverages vt to
quantify intervention effects, improving answer faithfulness
(Acc@GQA) and grounding precision (IoP@0.5), validat-
ing cross-modal causal consistency.

Moreover, the work [1] depends on manually annotated
temporal labels and fixed Gaussian distributions for weight-
ing, which are not well-suited to this task. In contrast, Gaus-
sian attention for grounding in this task is often generated
using NG, whereas our approach utilizes adaptive Gaussian
filtering to mitigate cross-modal attention noise. This sig-
nificantly enhances performance, as demonstrated in Table
3 of the paper.

1.4. About CMA module

While Contrastive Learning (CL) has been widely applied
in weakly supervised video moment retrieval, our task is
fundamentally different. Specifically, VideoQG task in-
volves retrieving video segments based on questions and
effectively answering them, which requires more complex
textual indexing and ensures causal consistency between
video segments and answers. Our CMA, based on the
causal model, ensures the alignment of debiased features



Vid. Que. Seg. Seg. Dur.(s) Vid. Dir.(s) Ratio (S./V.)
Train 3,860 34,132 - - 44.9 -
Val 567 3,358 3,931 7.3 42.2 0.2
Test 990 5,553 6,600 6.7 39.5 0.2
Total 5,417 43,043 10,531 - - -

Table 1. Statistics of NExT-GQA dataset.

rather than merely applying CL in a straightforward man-
ner. From Table 4 of the paper, CMA delivers the most sig-
nificant improvement. In comparison, Temp[CLIP], which
employs simple CL, achieves only a moderate improvement
of 0.8 Acc@GQA in the ablation.

2. Datasets Analysis
2.1. NextGQA

NextGQA [4] is a benchmark for the weakly super-
vised VideoQG task and extends the NextQA [3]. It
includes two types of questions: Causal (“why/how”),
Temporal (“before/when/after”), and excludes Descriptive
(“what/who/where”) mostly pertain to global content (e.g.,
“what event?”) or answers can be found almost throughout
the whole video (e.g., “where is?”). The dataset contains
annotations for 10,531 valid time segments corresponding
to 8,911 QA pairs and 1,557 videos, as shown in Table. 1.
Most segments are shorter than 15 seconds, with an aver-
age duration of 7 seconds, significantly less than the total
video length of approximately 40 seconds. These segments
occupy an average of only 20% of the full video, and their
distribution across the left, middle, and right positions of
the video is even.

2.2. STAR

STAR [2] is a situated video question reasoning dataset built
with naturally dynamic, compositional, and logical real-
world videos, which consists of 4,901 videos, 60,206 ques-
tions, and corresponding time segments, as shown in Ta-
ble 2. The questions are generated programmatically based
on situational hypergraphs. Situated reasoning also requires
structured situation comprehension and logical reasoning,
which is a challenging benchmark for VideoQG models. It
features four types of questions: Interaction, Sequence, Pre-
diction, and Feasibility. Video scenes in the dataset are de-
composed into hypergraphs containing atomic entities and
relationships, such as actions, objects, and interactions.

2.3. Comparison

NextGQA is developed based on NextQA, with its text con-
tent also derived from the latter. NExT-QA focuses primar-
ily on causal and temporal reasoning, posing questions like
“why” and “how” to explore the sequence and causes of
events. In contrast, STAR emphasizes contextual reason-
ing, involving logical inference based on the context and

Vid. Que. Seg. Seg. Dur.(s) Vid. Dir.(s) Ratio (S./V.)
Train 3,032 45,731 45,731 11.5 30.0 0.39
Val 914 7,098 7,098 11.9 30.0 0.40
Test 955 7,377 7,377 11.6 29.7 0.40
Total 4,901 60,206 60,206 - - -

Table 2. Statistics of STAR dataset.

Method Acc@GQA↑ Acc@QA↑ Bias Error↓ Unfaithful↓
PH 15.3 59.0 28.5 41.4

CRA 18.2(+2.9) 61.1(+2.1) 27.4(-1.1) 40.0(-1.4)

Table 3. Quantify the de-bias

Method Text Acc@GQA Acc@QA TIoP@0.5
NG+ Qwen2.5-1.5B 15.0 65.2 21.5
CRA Qwen2.5-1.5B 16.5 65.4 23.1

Table 4. Ablation of the LLM on NExT-GQA dataset

relationships within the video. While NExT-QA employs
multiple-choice and open-ended questions, STAR offers a
broader range of question types that require various forms
of logical reasoning, such as predicting future actions or as-
sessing the feasibility of events based on the video context.

Furthermore, STAR’s questions and answers are gen-
erated through automated scripts following standard tem-
plates, whereas NextQA relies on human annotations. This
suggests that the automatically generated questions and an-
swers in STAR may introduce more systematic and sub-
tler biases. Consequently, as discussed in the main text,
our CRA model shows more significant improvements on
the STAR dataset compared to its performance on the
NextGQA dataset. Additionally, in NextGQA, there are in-
stances where a single QA pair corresponds to multiple time
intervals.

2.4. Quantify the de-bias

We employ metrics similar to the Acc@GQA metric. Sam-
ples with an IoP < 0.3 can be noted as follows: incorrect
answers are denoted bias errors; correct answers are consid-
ered unfaithful answers. We effectively reduce bias-induced
errors and decrease the occurrence of unfaithful answers,
aligning with the improvements observed in the Acc@GQA
metric (Table 3).

2.5. LLM ablation experiment

We have addressed this point in the main text from the
paper (Section 4.3.1). Overall, LLMs possess extensive
prior knowledge, and some methods are even trained with
detailed temporal annotations, making a fair comparison
challenging. Additionally, we conducted experiments us-
ing more advanced LLMs as the text model. As shown in
Table 4, although the model was not fully adapted to this
task due to time constraints, the results still validate the ef-
fectiveness of CRA.



Method Vision Text Acc@GQA Acc@QA TIoP@0.5
IGV ResNet BT 10.2 50.1 18.9
CRA ResNet BT 13.2 51.5 23.9

Table 5. Comparison with IGV on NExT-GQA dataset

2.6. Compare with IGV

Most existing work implicitly performs deconfounding,
with the effectiveness of their causal modules primarily
evaluated using the Acc@VQA metric. Our CRA inte-
grates causal front-door intervention with the Grounded
VideoQA task, enabling the performance of the indirectly
trained Temporal Grounding to directly quantify the effec-
tiveness of the causal module. Additionally, while IGV con-
structs a causal model based on scene invariance, our CRA
achieves finer alignment through causal intervention com-
pared to the coarse-grained segmentation and recombina-
tion of video clips. For a fair comparison, we employed
the same backbone as IGV for experimentation, and our
method still demonstrated superior performance, as shown
in Table 5.

3. Metrics

3.1. Acc@VQA

The Acc@VQA metric evaluates model performance in the
VideoQA task. In our experiments, we assessed VideoQA
accuracy exclusively on the NextGQA dataset, rather than
the NextVQA dataset, as the former is merely a subset of the
latter. Furthermore, since the test set of the STAR dataset is
evaluated online, we were unable to compute Acc@GQA
based on Acc@VQA. Consequently, our evaluation was
limited to the validation set of the STAR dataset.

3.2. Acc@GQA

Typically, accuracy in Visual Question Answering
(Acc@VQA) represents only the percentage of correctly
answered questions. To assess the use of visual evidence,
we employ IoU and IoP to evaluate whether the predicted
time window aligns with the ground truth. However, evalu-
ating QA and grounding separately does not reveal whether
the model correctly infers the answer based on causally
relevant video segments. To comprehensively evaluate both
aspects, Xiao et al. [4] proposed Grounded QA accuracy
(Acc@GQA), which measures the percentage of correctly
answered questions where the temporal grounding has an
IoP greater than 0.5.

3.3. IoU and IoP

In the Video Temporal Grounding task, the Intersection over
Union (IoU) is a crucial metric for assessing the overlap
between the predicted time segment and the ground truth
segment. Specifically, IoU is calculated using the following

formula:

IoU =
tpred

⋂
tgt

tpred
⋃
tgt

(5)

tpred represents the predicted time interval, and the
ground truth is denoted as tgt. On the timeline, the pre-
dicted and actual annotated time segments often do not align
perfectly. A higher IoU value indicates greater overlap be-
tween the predicted segment and the actual segment, sig-
nifying higher model prediction accuracy. The IoU value
ranges from 0 to 1, where 1 denotes complete overlap and
0 indicates no overlap at all. The mean Intersection over
Union (mIoU) refers to the average IoU value across multi-
ple videos or samples. IoU@0.3 and IoU@0.5 are specific
IoU metrics calculated with thresholds of 0.3 and 0.5, re-
spectively. Generally, IoU@0.3 represents the proportion
of samples where the IoU value between the predicted and
actual time segments is at least 0.3.

Similarly, the Intersection over Prediction (IoP) is an-
other important evaluation metric used to assess the align-
ment between the predicted time segment and the actual
time segment. The IoP is calculated using the following
formula:

IoP =
tpred

⋂
tgt

tpred
(6)

Unlike IoU, which focuses on the overall overlap
between the predicted and actual time segments, IoP
emphasizes accuracy within the predicted time seg-
ment—specifically, how much of the predicted segment
overlaps with the actual annotated segment. The IoP value
also ranges from 0 to 1, with a higher value indicating
that a larger proportion of the predicted segment correctly
matches the actual segment.

4. More Experiments
4.1. NextGQA

As shown in Table 6, a more detailed analysis was con-
ducted based on different question types in the NextGQA
benchmark. This benchmark includes two main categories
of questions: causal questions, comprising 3,252 exam-
ples (58.6% of the total), as mentioned in the dataset anal-
ysis section, and temporal questions, comprising 2,301
examples (41.4% of the total). A comparison of these
results with the overall performance indicates that the
CRA framework achieves superior performance on causal
questions. Notably, while Temp[CLIP] and FrozenBiLM
achieve identical Acc@GQA scores, Temp[CLIP] exhibits
significantly higher IoP@0.5, whereas FrozenBiLM outper-
forms Acc@VQA. This suggests that larger models, de-
spite leveraging data priors learned from extensive datasets,
also introduce more pronounced biases. Nevertheless, the
CRA framework significantly mitigates these biases on



the FrozenBiLM [5] model when compared to the NG+
method [4].

Additionally, for the temporal question category, CRA
achieves the highest Acc@GQA scores across both mod-
els. This indicates that CRA demonstrates a higher de-
gree of causal consistency between the retrieved video seg-
ments and the answers in the VideoQG task. Regarding the
IoP@0.5 metric, the difference between Temp[CLIP] and
FrozenBiLM is minimal, suggesting that temporal tasks are
less affected by biases introduced during large-scale model
pretraining. Consequently, CRA demonstrates robust im-
provements across various scenarios.

4.2. STAR

In our analysis of the STAR dataset, we categorize the ques-
tions into four types: Interaction (2,398 questions, account-
ing for 33.8% of the total), Sequence (3,586 questions,
50.5%), Prediction (624 questions, 8.8%), and Feasibility
(490 questions, 6.9%), as shown in Table 7. It is evident that
Interaction and Sequence questions dominate the dataset,
comprising over 85% of the questions and significantly in-
fluencing the overall performance.

Firstly, for Interaction-type questions, although our
approach demonstrates average performance in the
Acc@VQA and Acc@GQA metrics, it achieves the best
results in the temporal grounding task. This indicates that
our model can more accurately locate relevant information
when interpreting interactions between people and objects
in the video. However, this strong grounding performance
does not translate into causal consistency in the answers.

Sequence-type questions stand out, although the pro-
posed method achieves an Acc@VQA score 1.6% lower
than FrozenBiLM (NG+) on the Temp[CLIP] model, it
surpasses the latter by 6.7% in IoP@0.5 and 2.7% in
Acc@GQA. These results highlight the model’s exceptional
performance in handling temporal reasoning tasks, demon-
strating a superior ability to capture the sequence and logic
of events. This leads to a deeper understanding of video
content and a high degree of causal consistency.

For predictive questions, overall performance is slightly
better than that for sequential questions. As shown in the ta-
ble, the performance of FrozenBiLM consistently surpasses
that of Temp[CLIP], including in the IoP@0.5 metric. This
suggests that larger-scale models exhibit stronger reasoning
capabilities for predicting future events, a benefit derived
from the prior knowledge embedded in their training data.

Furthermore, this perspective is further validated in
feasibility-related questions. Such questions are character-
ized by their diversity and complexity, involving not only
directly observable information from videos but also im-
plicit conditions and assumptions. These questions typi-
cally require a deep understanding of the video context and
the ability to infer whether a given scenario is plausible in

real life. This often demands sophisticated logical reason-
ing and consideration of multiple factors. For instance, a
question might require the model to determine the feasi-
bility of an action under specific conditions, necessitating
not only an understanding of the video content but also rea-
soning about underlying physical principles and common-
sense knowledge. The inherent difficulty of these questions
explains why the large-scale FrozenBiLM model performs
best in this category. Notably, with the enhancement of
the CRA framework, FrozenBiLM achieves an impressive
IoP@0.5 score of 41.8%. This finding motivates further de-
velopment of the CRA framework with even larger models
to enhance its capability to handle such complex reasoning
tasks.

5. Visualization of CRA on NextGQA dataset

As shown in Figure 1, we present the visualization results of
CRA on the NextGQA test set. In Figure 1(a), the question
belongs to the Temporal category. After removing Gaus-
sian smoothing, the attention weights exhibit significant os-
cillations along the temporal axis, preventing the model
from effectively estimating the intervals. However, the pro-
posed GSG module successfully mitigates these noise ef-
fects, enabling the accurate localization of relevant inter-
vals, thereby improving both IoP@0.5 and IoU@0.5 perfor-
mance. Nevertheless, the Temp[CLIP] model, despite these
enhanced weights, still fails to provide a correct answer to
this question. In contrast, the FrozenBiLM model deliv-
ers the correct answer by relying solely on the final frame.
From the attention weights, it is evident that the model is
highly confident, producing a single narrow peak and iden-
tifying a short temporal interval. This behavior highlights
the inherent bias of large-scale models.

Similarly, as shown in Figure 1(b), our method effec-
tively identifies relevant intervals and correctly answers
causal questions. However, it is notable that while Frozen-
BiLM also answers correctly, it confidently attends to incor-
rect visual information. This further confirms the more se-
vere spurious correlations introduced by data biases in large
models. Additionally, comparing the provided ground truth
reveals that our method is not entirely incorrect. The video
segment estimated by CRA is sufficient to support the an-
swer, while the ground truth interval appears unnecessarily
redundant. This observation underscores the greater impor-
tance of IoP@0.5 compared to IoU@0.5, as the task priori-
tizes the precision of interval estimation.

6. Visualization of CRA on STAR dataset

As illustrated in Figure 2, we present the visualization of
CRA on the STAR dataset. As mentioned earlier, Figure 2
(a) depicts a scenario where a man is organizing a wardrobe,
an activity that spans the entire video. The ground truth



Que.Type Method Model Acc@GQA Acc@VQA IoP@0.5 IoU@0.5

Causal NG+ Temp[CLIP] 18.2 60.3 29.5 9.8
NG+ FrozenBiLM 17.6 70.9 23.3 8.1

3,252 CRA Temp[CLIP] 20.2 60.7 31.9 10.8
58.6% CRA FrozenBiLM 20.2 71.3 27.4 10.0

Temporal NG+ Temp[CLIP] 12.7 60.5 20.9 8.4
NG+ FrozenBiLM 14.1 68.6 19.6 8.3

2,301 CRA Temp[CLIP] 15.4 61.8 23.7 10.3
41.4% CRA FrozenBiLM 16.8 68.9 23.8 9.0

Total

NG+ Temp[CLIP] 15.9 60.2 25.9 9.2
NG+ FrozenBiLM 16.1 69.9 21.8 8.2
CRA Temp[CLIP] 18.2 61.1 28.5 10.6
CRA FrozenBiLM 18.8 70.3 25.9 9.6

Table 6. Comparison with state-of-the-art methods on NextGQA test set. We train the Temp[CLIP](NG+) and FrozonBiLM(NG+) models
on the NextGQA dataset via the official code.

Que.Type Method Model Acc@GQA Acc@VQA IoP@0.5 IoU@0.5
Interaction NG+ Temp[CLIP] 12.5 52.3 23.6 5.6

2,398 NG+ FrozenBiLM 13.4 54.3 22.8 7.3
33.8% CRA Temp[CLIP] 14.1 53.3 25.5 7.5

CRA FrozenBiLM 14.8 54.7 25.4 5.6
Sequence NG+ Temp[CLIP] 32.0 59.5 53.2 4.2

3,586 NG+ FrozenBiLM 32.2 62.5 50.6 8.2
50.5% CRA Temp[CLIP] 34.9 60.9 57.3 3.8

CRA FrozenBiLM 34.0 62.9 52.1 4.0
Prediction NG+ Temp[CLIP] 33.2 61.5 51.9 5.3

624 NG+ FrozenBiLM 37.5 64.8 57.9 10.4
8.8% CRA Temp[CLIP] 36.5 62.8 56.9 4.6

CRA FrozenBiLM 40.9 65.9 60.6 7.2
Feasibility NG+ Temp[CLIP] 16.1 61.5 28.4 4.2

490 NG+ FrozenBiLM 21.6 66.1 33.9 7.1
6.9% CRA Temp[CLIP] 17.6 63.3 27.8 8.6

CRA FrozenBiLM 25.3 64.1 41.8 7.6

Total

NG+ Temp[CLIP] 24.4 57.3 41.4 4.7
NG+ FrozenBiLM 25.8 60.1 40.9 7.8
CRA Temp[CLIP] 26.8 58.6 44.5 5.5
CRA FrozenBiLM 27.5 60.5 43.1 5.1

Table 7. Comparison with state-of-the-art methods on STAR val set because the Acc.@GQA metric can not be calculated on the private
test set.
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Q: How do the audience react at the end of the woman`s speech?
A: Clap.

Q: Why does the child in stripes hold on to the table?
A: Support.

(b)

(a)

Figure 1. Visualization examples in NextGQA dataset. The numbers ([start time, end time]) indicate the interval range.

segment is centered within the video, which is a reasonable
choice. However, the video segments adopted by various
methods appear sufficient to serve as the basis for answer-
ing the question. This suggests that the dataset may con-
tain some annotation noise and that the evaluation methods
could have certain limitations. On the other hand, in the
example of a Feasibility-category question as shown in Fig-
ure 2 (b), the effectiveness of Gaussian smoothing is reaf-
firmed. This approach effectively suppresses noise and fa-

cilitates better multi-modal alignment.
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Q: Which object was tidied up by the person?
A: The closet/cabinet.

Q: What else is the person able to do with the towel?
A: Take the towel.

(b)

(a)

Figure 2. Visualization examples in STAR dataset. The numbers ([start time, end time]) indicate the interval range.
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