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1. Experimental details

1.1. Data preprocessing

The matching camera parameters and SMPL [7] parame-
ters can be obtained using VideoAvatar [1]. We construct
a tetrahedron [12] that encloses the initial SMPL mesh and
slightly expand its range to accommodate scenarios involv-
ing loosely fitted clothing. We use SAM2 [9] to obtain 2D
human parsing masks and retain the necessary categories
such as body and one-piece outfits. Compared to REC-
MYV [8], our mask does not require additional processing of
clothing feature lines. We employ the Sapiens [6] to obtain
normals for the clothed human, which are used to optimize
the details of the deformation network. To avoid starting
training from an initial state that is too far from the target,
we pre-warm the SDF network parameters to approximate
the shape of the SMPL model. The hmSDF is defined di-
rectly at each tetrahedron vertex, without the use of a neural
network. It is initialized with random values with a mean of
0 and a variance of 1.

1.2. Body Completion and Fusion.

To separate the invisible body parts, we construct a tetrahe-
dral mesh and SDF representation for the body, where the
SDF is initialized to the shape of SMPL. At the same time,
a body hmSDF is maintained and optimized in the same
way. However, directly extracted body regions occluded by
clothing may produce artifacts in areas such as the under-
arms. Therefore, we further use segmentation edges to cut
the densified SMPL mesh. Since the gap between the recon-
structed visible body and the invisible SMPL mesh regions
is sufficiently small, Poisson reconstruction [5] can easily
be used to fuse them together.

2. Experimental Results

2.1. Ablation of Region Aggregation

We present the results before and after using the region ag-
gregation algorithm in Figure 1. Before region aggregation,
incorrect segmentation can result in excess fragments and
geometric holes. After region aggregation, it is possible to
eliminate these fragments and holes.

The clothing and body should each have a fixed number
of connected components; for example, the clothing is typ-
ically a single complete connection, while the body is usu-
ally divided into five connected components (the head and
four limbs) due to the presence of clothing. We determine
the correctness of each connected component by checking

the number of vertices it contains and aggregating incor-
rectly categorized components into the correct connected

components.

After region aggregation

Before region aggregation

Figure 1. Region aggregation result.

2.2. Abltaion of Collision Distance Value.

When the collision distance value is small, the clothing and
body meshes are too close together. Even if the body is
indeed inside the clothing, rendering inaccuracies may oc-
cur, leading to incorrect judgments of the visible areas. We
compare the rendering differences with different collision
distance values in Figure 2.

€2 = 0.001 e2 = 0.005

Reference Images

Figure 2. Ablation study on rendering mask inaccuracies caused
by collision distance values. When e; = 0.001, the clothing and
body are too close together, causing rendering inaccuracies that
classify some parts of the body occluded by the clothing as visible,
resulting in incorrect rendering results. When ez = 0.005, the
inaccuracies are eliminated, and the rendering results are correct.

2.3. Qualitative Comparisons

We present more qualitative comparisons on the
Peoplesnapshot[ 1] subjects, shown in Figure 3.
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Figure 3. More qualitative comparisons on the Peoplesnapshot dataset. In comparison, our method demonstrates superior qualitative
performance in reconstructing detailed clothing and body, as well as in achieving decoupling.
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Figure 4. More qualitative comparisons on the SelfRecon dataset.



Results

Figure 5. Reconstruction of humans wearing dresses or skirts in in-the-wild poses.

2.4. Quantitative Comparison

We show the visual results of Female 1 and Female 2 from
SelfRecon[4] in the quantitative experiments, in Figure 4.
Since the reconstruction results of each method may not be
in the same space, we use FRICP [13] to align the clothing,
body, and clothed human with their respective ground truth
counterparts before calculating the Chamfer Distance.
From the results, our method achieves the best numerical
accuracy while preserving details during decoupled recon-
struction. DELTA [2] attains the second-best accuracy for
the body, as it also optimizes the body; however, the visi-
ble body appears quite similar to the SMPL model, lacking
facial details that closely resemble the input images. REC-
MYV [8] achieves the second-best accuracy and visual qual-
ity for clothing, but its level of detail is less refined com-
pared to our method, and the SMPL model cannot be di-
rectly used as the body. SelfRecon [4] produces visually
appealing clothed human reconstructions but has lower nu-
merical accuracy due to imprecise body poses, resulting in
significant numerical errors. The clothed body reconstruc-
tions of GoMAvatar [10] are quite coarse. While BCNet [3]
supports accurate decoupled reconstruction, its accuracy is
relatively low as it is designed for single-frame scenarios.

2.5. User study of real-world dataset

. We add user studies to the comparison with qualitative
comparisons data, in Table 1. For each group of reconstruc-
tion results, participants addressed the following queries:

e Reconstruction Quality: Which video demonstrates
higher fidelity in body and garment reconstruction (ex-
cluding clothed areas, including head, hands, and feet),
considering both overall shape similarity and detailed fea-
ture preservation compared to the input video?

 Disentangling Ability: Which video achieves proper sep-

aration between garments and underlying body geometry
while maintaining complete structural integrity?

» Temporal Consistency: Which video best maintains tem-
poral coherence in video sequences, ensuring both recon-
struction stability and motion continuity across frames?

e Overall: Considering the combined performance of
anatomical reconstruction accuracy, garment-body disen-
tanglement capability, temporal stability, and overall vi-
sual plausibility, which video delivers optimal results?

Our method achieves the best performance on all met-
rics. Our method can represent different types of clothing,
while existing methods struggle with open-topology cloth-
ing, making their reconstructions less suitable for down-
stream tasks.

Table 1. Average of 51 user studies, scored from O to 1. We assign
1 point to the best for each metric, 0.5 points to the second best,
and O points to the rest.

Metric REC-MV  DELTA  BCNet SelfRecon GoMavatar  Ours
Reconstruction Quality 1 0.047 0.060 0.059 0.183 0.004 0.647
Disentangling Ability 0.043 0.112 0.135 - - 0.710
Temporal Consistency 1 0.042 0.031 0.012 0.257 0.002 0.655
Overall 1 0.047 0.049 0.027 0.159 0.00 0.717

2.6. Reconstruction in in-the-wild poses

We show more examples of subjects wearing dresses
or skirts, including three public datasets and our collec-
tion of long dresses. Figure 5 shows examples includ-
ing “female-anran-dance” and “female-leyang-jump” from
REC-MYV [§], self-collected data and "franzi”” from MonoP-
erfCap [11]. The figure selects two frames with different
poses from each sequence. Our method can represent com-
mon clothing styles (with openings from the manifold sur-
face) in “in the wild” poses (not limited to self-rotation).



2.7.

Limitations.

In challenging scenarios such as fast motion or severe occlu-
sions, our method, like non-disentangled approaches, strug-
gles to achieve satisfactory results. The proposed hmSDF
can reconstruct common clothing with manifold surface
openings but struggles with highly irregular garments such
as fringes or stacked long dresses, which is also a limitation
of non-decoupled methods.
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