
DV-Matcher: Deformation-based Non-Rigid Point Cloud Matching Guided by
Pre-trained Visual Features

Supplementary Material

In this supplementary material, we provide more techni-
cal details and experimental results, including 1) A detailed
description of our Visual Encoding, LG-Network and ARAP
loss in Sec. 1; 2) Detailed descriptions of datasets in Sec. 2;
3) Further qualitative results on matching heterogeneous
shapes from SHREC’07-H and DT4D-H, quadruped shapes
from SHREC’07-Fourleg and SHREC’20 in Sec. 3.1, as well
as the full/partial registration results; 4) Quantitative results
following the setting from [7, 16, 21], where train/test with
the sparse point clouds of fixed 1024 points in Sec. 3.2;
Besides, the qualitative result of garment datasets [23],
SHREC’07-Fourleg and TOPKIDS are also presented in
Sec. 3.2; 5) Robustness evaluation of our method with re-
spect to several perturbations on input in Sec. 3.3; 6) More
high-dimensional feature visualization and matching results
of different dataset in Sec. 3.4; 7) Experimental setup, hyper-
parameter instruction in Sec. 3.5 and Sec. 3.6 respectively; 8)
The balance between runtime and accuracy (G2) are detailed
in Sec. 4; 9) Finally, the broader impacts are discussed in
Sec. 5.

1. Technical Details

Figure 1. The schematic illustration of the proposed Visual Encod-
ing.

Visual Encoding: Fig. 1 elucidates how we leverage the
utilization of features from pre-trained vision models through
a point-wise invertible projection from 3D point clouds to 2D
images. Specifically, we get features through DINOv2 [28]
and lift features via FeatUp [11], where the semantic features
are then back-projected to their corresponding points, as
described in Sec. 3.1 of the main text.
LG-Net: Fig. 2 illustrates the composition of LG-Net, which
aims to refine the features learned from 2D pre-trained vi-
sion models, so that is robust to large deformations and

Figure 2. The schematic illustration of LG-Net.

generalized to the challenging partiality. Specifically, for the
input representation F pt(P ) derived from pre-trained vision
models, we employ the LBR [15], which combines Linear,
BatchNorm, and ReLU layers, to facilitate the feature dimen-
sion transformation into F ′

Θ ∈ RN×384. Following this, we
apply position encoding from [27] to integrate 3D absolute
position information, which is subsequently combined with
the block-wise semantic features F ′

Θ to yield a refined repre-
sentation FΘ ∈ RN×384, denotes FΘ = F ′

Θ + γ, where γ is
a mapping from R into a higher dimensional space RN×384.
Later, our designed network is a dual-pathway architecture
in parallel to refine FΘ, comprising Global Attention and
Local Attention. The two attention modules differ in the
receptive field – given a point, the former abstracts features
of the remaining points to achieve comprehensive global
perceptual awareness, while the latter focuses on its nearest
neighborhoods. After undergoing local and global attention
mechanisms respectively, we further fuse both features at
the end of the refined network to obtain a more comprehen-
sive feature representation, where Fusion module consists of
LBR and a three-layer stacked N2P [29] attention to merge
features.
Network Details: Fig. 3 depicts from left to right the archi-
tecture diagrams of our local attention block, global attention
block, and fusion module.
ARAP loss: The as-rigid-as-possible term is also incor-
porated following [14, 22], which reflects the deviation of
estimated local surface deformations from rigid transforma-
tions:

L(S,T )
arap = ARAP (X) (1)

dh,l(X) = dh,l(Θ,∆) = R (Θh) (gl − gh) +∆k + gk − (gl +∆l) .
(2)

Here, g ∈ RH×3 are the original positions of the nodes in
the deformation graph DG, ψ(h) denotes the 1-ring neigh-
borhood of the h− th deformation node. R(·) corresponds



Figure 3. The schematic illustration of the main blocks of LG-Net.

to Rodrigues’ rotation formula, which computes a rotation
matrix from an axis-angle representation, and α is the weight
of the smooth rotation regularization term.

2. Dataset Details

SCAPE_r: The remeshed version of the SCAPE dataset [2]
comprises 71 human shapes. We split the first 51 shapes
for training and the rest 20 shapes for testing. FAUST_r:
The remeshed version of FAUST dataset [4] comprises 100
human shapes. We split the first 80 shapes for training and
the rest 20 for testing. SHREC’19_r: The remehsed ver-
sion of SHREC19 dataset [26] comprises 44 shapes. We
pair them into 430 annotated examples provided by [26]
for testing. DT4D-H: A dataset from [24] comprises 10
categories of heterogeneous humanoid shapes. Following
[17], we use it solely in testing, and evaluating the inter-class
maps split in [24]. SHREC’07-H: A subset of SHREC’07
dataset [12] comprises 20 heterogeneous human shapes.
We use it solely in testing. SHREC’07-Fourleg: A sub-
set of SHREC’07 dataset [12] comprises 20 heterogeneous
fourleg animals. We use a total of 380 pairs for training.
SHREC’20: A dataset [9] comprising highly non-isometric
non-rigid quadruped shapes of 14 animals, encompassing 12
full shapes and 2 partial shapes. We use it solely for testing.
SURREAL: It is the large-scale dataset from [13] comprises
230,000 training shapes, from which we take the first 2,000
shapes and use it solely for training. TOSCA: Dataset from
[33] comprises 41 different shapes of various animal species.
Following [7, 21], we pair these shapes to create both for

training and evaluation, respectively. SHREC’16: Partial
shape dataset SHREC’16 [6] includes two subsets, namely
CUTS with 120 pairs and HOLES with 80 pairs. Following
[3, 5], we train our method for each subset individually and
evaluate it on the corresponding unseen test set (200 shapes
for each subset). Moreover, we further conduct some practi-
cal experiments on partial real scan dataset processed from
[19] and medical dataset from [1]. SURREAL: The large-
scale dataset from [13] comprises 230,000 training shapes,
from which we select the first 2,000 shapes and use them
solely for training. SMAL: Large-scale dataset from [33],
which includes parameterized animal models for generating
shapes. We employ the model to generate 2000 instances of
diverse poses for each animal category, resulting in a training
dataset comprising 10000 shapes. TOPKIDS: A challeng-
ing dataset [20] consists of 26 shapes of a kid in different
poses, which manifest significant topological perturbations.
GarmCap: A dataset from [23], which contains textured 3D
garment scans in various poses. We take 40 T-shirt shapes
for training, and test on 10 unseen T-shirt shapes, along with
10 long coats, 10 thick coats, and 10 orange coats. Spleen:
Following [1], we take 32 aligned medical spleens for train-
ing and 4 other shapes for testing. Pancreas: Following [1],
we also take 216 aligned medical pancreases for training and
28 other shapes for testing.



Figure 4. We estimate correspondences between heterogeneous shapes from SHREC’07-H and DT4D-H with DPC,SE-ORNET and one
SSMSM, all trained on the SCAPE_r dataset. Our method outperforms the competing methods by a large margin.

Figure 5. We estimate correspondences between highly non-isometric non-rigid quadruped shapes from SHREC’07-Fourleg and SHREC’20
with DPC,SE-ORNET and PointRegSet, all learning-based methods trained on the SHREC’07-Fourleg dataset. Our method outperforms the
competing methods by a large margin. Note that the bear in the third row is incomplete.

3. Additional Experiments

3.1. Further Qualitative Results

Non-isometric human shapes Matching: In Fig. 4, we
qualitatively visualize maps obtained by different methods
tested in the SHREC’07-H and DT4D-H benchmark. It
is obvious that our results outperform all the competing

methods, showing superior generalization performance.

Non-isometric quadruped shapes Matching: We also
conducted training on the quadruped dataset – SHREC’07-
Fourleg, and subsequently tested on challenging SHREC’07
and SHREC’20, respectively. Fig. 5 illustrates several of
the most highly non-isometric shapes, where our method
significantly outperforms other baselines. Specifically, as we



Figure 6. The figure illustrates the registration results of various
baselines, along with our proposed deformer.

Figure 7. The figure illustrates the partial registration results of
various baselines, along with our proposed deformer.

leverage the semantic information extracted from pre-trained
vision models and the formulation of geometric information,
our approach exhibits promising performance across even
challenging heterogeneous shapes.
Full Registration Results: Fig. 6 illustrates the registration
results of different methods on full point clouds, where all
learning-based methods were trained on SCAPE_r dataset.
The results indicate that axiomatic non-learning-based meth-
ods, whether AMM [30] or the recent PointSetReg [32],
all exhibit errors in the vicinity of the foot area; whereas,
learning-based reconstruction methods – DPC [21], SE-
ORNet [7] reconstruct the point clouds with substantial
noise; RMA-Net [10], which also employs projected 2D
images as a prior, but fails to deform effectively to the target
shape as well. In contrast, our deformer achieves efficient,
high-quality, and smooth deformed point clouds quickly
without optimizing iterations.
Partial Registration Results: Fig. 7 presents more chal-
lenging cases, namely registering the full point cloud to the
partial point cloud, where all learning-based methods were
trained on SCAPE-PV dataset. The results show that all other
baselines fail to maintain the complete source shape after
registration, collapsing into partial, and both learning-based
methods [7, 21] and recent axiomatic non-learning-based
method [32] result in significant noise post-registration. This
further underscores the robustness of our method and our
ability to handle partial cases effectively.

3.2. Further Quantitative Results

For the benchmarks involving downsampled point clouds
from original shapes, which results in the absence of the
complete mesh structure. Thus, we replace the geodesic
distance with the Euclidean distance for our evaluation, as
defined in Eq. 3. This substitution is detailed in Tab. 1 and
Tab. 2 in Supp. Mat., also Tab. 3 within the main text.

Table 1. Quantitative results on human and animals datasets. Acc
signifies correspondence accuracy at 0.01 error tolerance, and err
denotes average correspondence error (err × 1000). The best
results in each column are highlighted.

Train SHREC’19 SURREAL TOSCA SMAL
Test SHREC’19 TOSCA

acc ↑ err ↓ acc ↑ err ↓ acc ↑ err ↓ acc ↑ err ↓
3D-CODED[S] [13] \ \ 2.1% 8.1 \ \ 0.5% 19.2
Elementary[S] [8] \ \ 0.5% 13.7 \ \ 2.3% 7.6
CorrNet3D[U] [31] 0.4% 33.8 6.0% 6.9 0.3% 32.7 5.3% 9.8
RMA-Net[U] [10] 4.5% 6.0 \ \ 2.2% 29.4 \ \
DPC[U] [21] 15.3% 5.6 17.7% 6.1 34.7% 2.8 33.2% 5.8
SE-ORNet[U] [7] 17.5% 5.1 21.5% 4.6 38.3% 2.7 36.4% 3.9
HSTR[U] [16] 19.3% 4.9 19.4% 5.6 52.3% 1.2 33.9% 5.6
Ours [U] 23.9% 4.3 27.1% 4.0 56.2% 0.9 39.5% 3.3

Sparse Humans/Animals Benchmarks: Following the
prior works [7, 16, 21], we conduct the experiments with
a consistent sampling point number of n = 1024. Specif-
ically, for a pair of source and target shapes (S, T ), the
correspondence error is defined as:

err =
1

N

∑
xi∈S

∥f (xi)− ygt∥2 , (3)

where ygt ∈ T is the ground truth corresponding point to
xi. Additionally, we measure the correspondence accuracy,
defined as:

acc(ϵ) =
1

N

∑
xi∈S

I
(
∥f (xi)− ygt∥2 < ϵd

)
, (4)

where I(·) is the indicator function, d is the maximal Eu-
clidean distance between points in T , and ϵ ∈ [0, 1] is an
error tolerance. We evaluate the accuracy at 1% tolerance
following [21].

We train on the SURREAL and SHREC’19 dataset re-
spectively, and then test on the SHREC’19 dataset. Similarly,
we train respectively on SMAL and TOSCA dataset, and
then test on the TOSCA dataset. As shown in Tab. 1, un-
like HSTR[16], which achieves the best performance on its
intra-dataset but lags behind SE-ORNet[7] on cross-dataset
generalization, our approach excels in both intra-dataset and
cross-dataset tests, surpassing all existing methods by over
12% (4.3 vs. 4.9). This also complements Tab. 1 in the main
text, demonstrating that our method yields robust results
whether trained/tested on dense or sparse point clouds.
Garment Dataset: We choose T-shirt (GarmCap_1) to train
our DV-Matcher and other baselines, then evaluate on all
four sequences of garment dataset [23]. As shown in Tab. 2,
our method outperforms the second best over 35% relative
error reduction (5.24 vs. 8.09).
SHREC’07-Fourleg Dataset: We conducted further valida-
tion on challenging heterogeneous quadrupeds. We selected
all 20 shapes and uniformly sampled (including upsampling
and downsampling) to 5,000 points for training, and tested



Figure 8. Visualization of different feature dimensions and mapping. Dim.i denotes the features of the i− th dimension, where i ≤ 128.

Figure 9. The arrows illustrate the entire process, with features visualized comprehensively. 2D features are visualized using PCA, while 3D
shows one channel’s features (left) and its map (right).

on 380 pairs of original point clouds. As shown in Tab. 3,
our method outperforms 49% over past approaches (6.19
vs. 12.37), whether they are learning-based [7, 21] or ax-
iomatic [32].
Topological Noise: We compare PointSegReg, DPC, SE-
ORNet and Ours on TOPKIDS [20] (trained on SCAPE_r),
achieving respectively error: 20.3, 20.9, 20.2,12.9, where
ours outperforms the rest by a significant margin of 36%.

3.3. Robustness

Moreover, we evaluate the robustness of our model with
respect to noise and rotation perturbation and report in Tab. 4.
More specifically, we perturb the point clouds by: 1) Adding
per-point Gaussian noise with i.i.d N (0, 0.02) along the
normal direction on each point; 2) Randomly rotating ±30

Table 2. Quantitative results on four different garments from Garm-
Cap in terms of Euclidean distance error (err × 100). The best is
highlighted.

Method GarmCap_1 GarmCap_2 GarmCap_3 GarmCap_4
PointSetReg[A] [32] 8.95 8.53 9.27 8.96
DPC[U] [21] 7.24 10.12 10.19 9.03
SE-ORNET[U] [7] 7.11 8.09 10.08 8.86
RMA-Net[U] [10] 7.02 10.92 9.55 9.67
Ours[U] 4.92 5.24 5.85 5.62

degree along some randomly sampled direction. We perform
3 rounds of test, and report both mean error and the standard
deviation in parentheses. Our pipeline delivers the most
robust performance among all the other baselines (0.1 vs.
0.11, 0.25 vs. 0.41), including SE-ORNET[7] which is
designed for rotational robustness.



Table 3. Quantitative results on SHREC’07-Fourleg in terms of
mean geodesic distance errors (×100). The best is highlighted.

Method SHREC’07-Fourleg
DPC[U] [21] 20.82
SE-ORNET[U] [7] 17.44
PointSetReg[A] [32] 12.37
Ours[U] 6.19

Table 4. Mean geodesic errors (×100) on under different pertur-
bations. Noisy PC means the input point clouds are perturbed by
Gaussian noise. Rotated PC means the input point clouds are ran-
domly rotated within ±30 degrees. The standard deviation value is
shown in parentheses.

Method Unperturbed Noisy PC Rotated PC
DiffFMaps[S] [25] 12.0 14.9(2.57) 26.5(3.35)
NIE[U] [18] 11.0 11.5(0.32) 19.9(1.29)
SSMSM[U] [5]

Mesh
Required 4.1 5.4(0.11) 9.2(1.01)

DPC[U] [21] 17.3 18.2(0.80) 22.1(0.72)
SE-ORNet[U] [7]

Pure
PCD 24.6 24.7(0.15) 27.2(0.41)

Ours [U] 6.2 6.4(0.10) 7.0(0.25)

Figure 10. Our matching result of the spleen dataset from [1].

3.4. More Visualizations
High-dimensional feature visualization: To further val-
idate the characteristics of the representations learned by
our method, we present a set of more comprehensive visu-
alizations of the features. As shown in Fig. 8, our feature
distribution is more clean and localized. However, upon los-
ing geometric or semantic information, the features across
different dimensions become divergent, resulting in the loss
of regular fine-grained representation at various levels.

We also provide feature visualization after each modules
in Fig. 9. Even on humanoid shapes, the visual features
tend to be coarse and symmetric, which is not good enough
for high-quality dense matching. With our operations, the
features become more sharp but also accurate.
Matching results of medical dataset: To supplement Tab. 5
of the main text, we further visualize the matching results on
the Spleen in Fig.10, where excellent mapping is achieved
regardless of whether the spleen exhibits various shapes or
is positioned at different angles.
More qualitative results: We further visualize the results
of TOSCA, DT4D, SHREC’07 and SCAPE-PV, which re-
spectively serve as qualitative validation supplements for
learning sparse point clouds in Tab. 1, the generalization
capability in Tab. 1 of the main text, and the adaptability
to partial shapes in Tab. 2 of the main text. The training
and testing procedures align with the methods described in
the aforementioned table, with quantitative supplements pre-
sented respectively in Fig. 11, Fig. 12, Fig. 13 and Fig. 14,
respectively. Furthermore, to supplement Fig. 5 and Tab. 3,

Figure 11. More qualitative results of TOSCA. All horse shapes
from the dataset have been showcased.

Figure 12. More qualitative results of DT4D. Our method demon-
strates a notable improvement over other baselines.

Figure 13. More qualitative results of SHREC’07. Our approach
significantly outperforms other baselines.

we further visualized the quantitative performance of our
method on SHREC’07-Fourleg and SHREC’20 in Fig. 15.

3.5. Experimental Setup

We perform all the experiments on a machine with NVIDIA
A100-SMX4 80GB and Intel(R) Xeon(R) CPU E5-2680 v4
@ 2.40GHz using the PyTorch 2.2.0 framework.



Table 5. Hyper-parameters. The tables details the hyperparameter values that we used for the training of SCAPE_r.

Symbol Description Value
k_dist The nearest number for computing geometrically similarity loss. 500
N_dist The number of points sampled to calculate the geometrically similarity loss. 1000
k_deform The number of neighborhood features gathered in the graph convolutional network of our Deformer. 10
k_attn The number for searching latent nearest features in our Local Attention Block. 40
C The dimention of output feature. 128
decay_factor The multiplicative factor by which the learning rate is reduced during each decay. 0.5
decay_iter The epoch interval at which the learning rate is decayed. 10
alpha The temperature parameter in the Softmax function. It is a dynamically increasing value with epochs. As alpha increases, Pi becomes harder. 10-100
TEs Training epochs. 20
H,W The size of our projected image. 224,224

Figure 14. More qualitative results of SCPAE-PV. Our approach
achieves superior performance over other baselines across various
partial views.

Figure 15. More qualitative results of SHREC’07-Fourleg and
SHREC’20.

3.6. Additional Hyper-parameter Details
For a comprehensive understanding of the specific hyper-
parameter configurations, please refer to Tab. 5.

4. Runtime and Accuracy Balance

Our method achieves a balance between accuracy and effi-
ciency, which is illustrated in Fig. 16 by comparing with the

Figure 16. Runtime-Accuracy scatter.

point-based learning method. DFR in Tab.7 of the main text
is a mesh-based method, thus ignored here.

5. Broader Impacts
We fail to see any immediate ethical issue with the proposed
method. On the other hand, since our method is extensively
evaluated in matching human shapes and achieves excellent
results, one potential misuse can be surveillance, which may
pose negative societal impact.
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