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Supplementary Material

In this supplementary material, we include explanations of
the implementation details in Sec. 7, the discussion over
primitive growth in Sec. 8 and furthermore extensive ex-
periments in Sec. 9, Sec. 10 and Sec. 11.

7. Implementation Details
In this section, we elaborate on the implementation of our
ground truth downsampling strategy, the modification to the
learning rate, the modulation on the resolution scheduler,
and how we equip DashGaussian to the each backbones.

7.1. Ground Truth Downsampling

In the LR optimization stage, DashGaussian downsamples
the ground truth to supervise the LR renderings from 3D
Gaussians. We choose the official anti-alias downsampling
algorithm from Pytorch to downsample the ground truth im-
ages, preventing possible misguidance from aliased super-
vision hindering the optimization.

7.2. Learning Rate

Because the optimization scheme in DashGaussian is
specifically tailored, the learning rate for 3DGS optimiza-
tion should be properly scheduled to allow DashGaussian
to perform the best. For all the experiments, we keep all the
hyper-parameters unchanged as in the original 3DGS [4] ex-
pect the positional learning rate. We hold it constant as the
initial value in the LR optimization stage, and only allow it
to decay from the iteration i = argmini

{
⌊r(i)⌋ = 1

}
.

7.3. Modulation for Resolution Scheduler

As we pointed out in the paper, DashGaussian allocates the
iterations spent on the LR and HR optimization stage, in or-
der to accelerate the optimization process while maintaining
the rendering quality of 3DGS. To this end, we further mod-
ulate sr to suppress the LR stage while expanding the HR
stage. Specifically, we apply the natural logarithm to modu-
late the relative multiple for different resolutions, resulting
in a fraction function

f(F,Frm ,Fri) =
ln (X (F)/X (Fri))

ln (X (F)/X (Frm))
, (6)

with which we have

sri = S · (1− f(F,Frm ,Fri))

= S · ln (X (Fri)/X (Frm))

ln (X (F)/X (Frm))
.

(7)

Eq. (7) is the actual scheduling function we use for Dash-
Gaussian and all experiments in the paper.

7.4. Densification of DashGaussian

We explain how a densification step is performed in Dash-
Gaussian. Given an optimization step i where a densifi-
cation operation is performed, we set NGS as the current
number of Gaussian primitives, and Pi as the desired prim-
itive number after this densification operation. We first per-
form a prune operation on the primitives, resulting in N ′

GS

primitives left. Then we perform clone and split operation
to those Gaussian primitives that satisfy the densification
condition of the backbone while having a top Pi − N ′

GS

densification score. Each primitive is cloned or split de-
pending on its size, which follows the same routine as in
3DGS [4]. When the densification score differs, slight dif-
ference is there to adopt DashGaussian to the backbones.

7.5. Equipping DashGaussian to Backbones

When we enhance a 3DGS backbone with DashGaussian,
only few modifications to the codebase are adopted, includ-
ing a new learning rate schedule (see Sec. 7.2 in supple-
mentary), the rendering resolution schedule, the primitive
growth schedule, and a distinct densification operation (see
Sec. 7.4). These four modifications from DashGaussian are
basically common for different backbones, with slight dif-
ferences in the densification operation. We introduce these
differences in detail below.

3DGS [4] The original 3DGS has a densification score de-
fined as the positional gradient of each primitive. We keep
the densification score, and follow Sec. 7.4 to perform den-
sification. The optimizer is Adam [5].

Taming-3DGS [9] At the moment of this paper is writ-
ten, the codebase of Taming-3DGS has an efficient back-
ward pass implementation with the rest same as 3DGS [4].
So the densification operation is the same as Sec. 7.4. The
optimizer is Sparse Adam [9].

Revising-3DGS* [2] Because Revising-3DGS is not
open-sourced, we reproduce it on top of the codebase of
Taming-3DGS [9]. Notice that, Revising-3DGS demands
appointing the primitive number in the final 3DGS model.
To this end, we follow [2] to set Pfin as a constant, with our
momentum-based primitive budgeting disabled. Revising-
3DGS has its densification score defined as rendering error,
thus the densification operation follows Sec. 7.4 the same.
The optimizer is Sparse Adam [9].

Mip-Splatting [10] Mip-Splatting defines its densifica-
tion scores as two different scalars, where these two scores
are used together to specify the primitives to be densified.
For the primitive selection in densification, we merge the



Table 5. Scene-wise quantitative results over Mip-NeRF 360 dataset [1].

Method bicycle garden stump

NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓ NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓ NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓

3DGS [4] 5.74M 25.61 0.778 0.203 24.82 5.10M 27.80 0.874 0.102 23.99 4.64M 26.91 0.784 0.207 19.87
+Ours 5.38M 25.70 0.785 0.202 14.86 3.42M 27.93 0.873 0.110 11.72 3.80M 27.32 0.797 0.201 9.64

Mip-Splatting [10] 7.82M 25.95 0.803 0.162 38.81 5.60M 27.90 0.884 0.089 32.78 5.66M 27.15 0.800 0.181 28.57
+Ours 5.42M 25.85 0.796 0.176 17.67 3.87M 28.18 0.882 0.096 14.89 4.58M 27.20 0.800 0.189 11.39

Revising-3DGS* [2] 3.20M 25.58 0.776 0.205 5.44 2.65M 27.75 0.873 0.106 6.78 3.03M 27.04 0.797 0.191 5.43
+Ours 3.20M 25.66 0.791 0.191 4.19 2.65M 27.89 0.878 0.101 4.77 3.03M 27.42 0.812 0.182 3.25

Taming-3DGS [9] 3.85M 25.58 0.766 0.226 6.95 3.07M 27.63 0.869 0.110 6.89 3.73M 26.66 0.775 0.220 5.26
+Ours 3.87M 25.81 0.782 0.210 4.38 2.46M 27.91 0.868 0.119 3.80 3.14M 27.34 0.792 0.211 2.71

Method flowers treehill room

NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓ NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓ NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓

3DGS [4] 3.36M 21.86 0.622 0.328 16.50 3.62M 22.85 0.652 0.317 17.05 1.51M 31.72 0.927 0.191 15.60
+Ours 3.22M 22.17 0.631 0.318 10.78 3.63M 23.14 0.659 0.309 12.13 1.29M 31.58 0.923 0.203 8.06

Mip-Splatting [10] 4.32M 22.06 0.656 0.266 23.80 5.01M 22.61 0.655 0.269 26.12 2.10M 31.94 0.933 0.175 21.07
+Ours 3.88M 22.13 0.648 0.282 13.76 4.60M 23.15 0.662 0.285 15.47 1.59M 32.08 0.931 0.183 9.90

Revising-3DGS* [2] 2.05M 21.56 0.625 0.286 5.46 2.17M 22.65 0.647 0.307 4.80 1.00M 30.81 0.922 0.192 4.92
+Ours 2.05M 22.05 0.648 0.279 3.88 2.17M 22.80 0.656 0.300 3.30 1.00M 31.97 0.929 0.194 2.53

Taming-3DGS [9] 2.38M 21.83 0.615 0.336 4.72 2.52M 22.92 0.649 0.330 4.81 1.11M 31.51 0.925 0.198 4.32
+Ours 2.34M 22.31 0.633 0.320 3.30 2.88M 23.33 0.658 0.315 3.60 0.90M 31.85 0.922 0.205 2.38

Method kitchen counter bonsai

NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓ NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓ NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓

3DGS [4] 1.74M 31.41 0.933 0.113 18.28 1.17M 29.12 0.915 0.178 15.08 1.24M 32.19 0.947 0.173 13.56
+Ours 1.39M 31.58 0.926 0.128 9.68 1.01M 28.90 0.910 0.188 7.31 1.06M 32.01 0.944 0.177 7.28

Mip-Splatting [10] 2.13M 31.86 0.936 0.106 23.57 1.47M 29.33 0.920 0.165 19.72 1.61M 32.41 0.951 0.157 18.01
+Ours 1.71M 31.76 0.930 0.119 12.01 1.28M 29.22 0.915 0.176 9.14 1.35M 32.32 0.946 0.164 9.21

Revising-3DGS* [2] 1.43M 31.93 0.934 0.114 7.08 0.89M 29.23 0.916 0.175 6.51 1.01M 32.26 0.947 0.166 5.11
+Ours 1.43M 31.78 0.930 0.123 3.66 0.89M 29.03 0.912 0.185 3.01 1.01M 32.03 0.945 0.169 2.58

Taming-3DGS [9] 1.68M 31.09 0.930 0.117 7.71 1.02M 29.10 0.914 0.180 4.92 1.16M 32.20 0.943 0.175 4.00
+Ours 1.21M 31.52 0.926 0.127 3.89 0.78M 29.10 0.910 0.188 2.63 0.80M 32.10 0.943 0.175 2.38

primitives selected with these two densification scores as a
whole set and randomly select Pi − N ′

GS primitives from
them for densification. The optimizer is Adam [5].

8. Primitive Growth of DashGaussian

8.1. Why Fewer Primitives in DashGaussian?

As we discussed in Sec. 7.4 of the supplementary, the den-
sified primitives are selected by the vanilla densification
score together with a top-k selection to control the growth
of primitives. In the early LR optimization stage, the top-
k selection prevents the situation where a large amount of
Gaussians pass the threshold resulting in an explosion of
primitive growth. In the late HR optimization stage, the
optimized 3DGS is relatively stable and there are less than
Pi − N ′

GS primitives passing over the densification thresh-
old. The threshold-based densification and the top-k selec-
tion constrain each other, resulting in less densified primi-

tives in the final optimized 3DGS than Pfin.

8.2. Constant Primitive Number

Intuitively, Pfin, as the primitive number upper-bound, is
likely to influence the size of the optimized 3DGS. When
Pfin is extremely large, the primitive number NGS in the
optimized 3DGS is likely to explode, resulting in out-of-
memory (OOM) issue. Nonetheless, thanks to the double-
condition densification scheme as discussed in Sec. 8.1, we
can prevent OOM when Pfin is arbitrarily large. Concretely,
as Tab. 9 in the supplementary shows, when we remove the
primitive scheduler, which is equivalent to setting Pfin as
infinity, NGS still approximates to the primitive number of
the backbone. This indicates the primitive growth of Dash-
Gaussian is stable and safe. Also, one can simply remove
the threshold condition and only keep the top-k selection in
densification, such that NGS will exactly equal to Pfin after
the optimization.



Table 6. Scene-wise quantitative results over Deep Blending dataset [3].

Method drjohnson playroom

NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓ NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓

3DGS [4] 3.31M 29.09 0.901 0.244 19.47 2.32M 29.90 0.907 0.244 17.27
+Ours 2.47M 28.75 0.895 0.262 8.68 1.89M 29.84 0.906 0.249 7.64

Mip-Splatting [10] 4.13M 28.66 0.898 0.243 26.80 2.83M 29.85 0.906 0.235 20.33
+Ours 3.04M 28.80 0.899 0.255 10.73 2.06M 30.29 0.906 0.241 8.86

Revising-3DGS* [2] 2.52M 29.12 0.902 0.248 4.69 1.51M 29.96 0.909 0.248 3.43
+Ours 2.52M 29.35 0.903 0.252 2.47 1.51M 30.18 0.911 0.250 1.94

Taming-3DGS [9] 2.93M 29.24 0.905 0.241 5.38 1.72M 30.14 0.908 0.249 3.65
+Ours 2.53M 29.56 0.905 0.247 2.49 1.36M 30.49 0.908 0.249 1.91

Table 7. Scene-wise quantitative results over Tanks&Temples dataset [6].

Method train truck

NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓ NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓

3DGS [4] 1.08M 21.78 0.812 0.207 8.46 2.58M 25.45 0.882 0.146 12.72
+Ours 1.01M 22.01 0.806 0.223 5.91 1.85M 25.66 0.882 0.156 6.38

Mip-Splatting [10] 1.47M 21.76 0.825 0.190 11.31 3.24M 25.73 0.892 0.123 17.15
+Ours 1.18M 22.01 0.820 0.207 7.05 2.07M 25.91 0.892 0.137 8.07

Revising-3DGS* [2] 0.96M 22.10 0.823 0.211 4.18 1.68M 25.65 0.889 0.126 4.81
+Ours 0.96M 22.13 0.817 0.223 2.88 1.68M 25.56 0.888 0.129 3.43

Taming-3DGS [9] 1.07M 21.96 0.816 0.204 3.64 1.96M 25.28 0.882 0.145 4.40
+Ours 1.00M 22.22 0.817 0.208 2.75 1.39M 25.71 0.884 0.153 2.48

Table 8. Quantitative results of the ablation study over γ on Mip-
NeRF 360 dataset [1], with Taming-3DGS [9] as the backbone
of DashGaussian. ‘1−’ indicates where γ infinitely approaches 1
from below, equivalent to removing the primitive scheduler.

γ NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓

Taming-3DGS [9] 2.02M 27.61 0.821 0.210 5.51

1− 2.46M 27.99 0.829 0.196 4.43
0.99 2.17M 27.98 0.828 0.204 3.49
0.98 (Ours) 2.04M 27.92 0.826 0.208 3.23
0.95 1.52M 27.81 0.820 0.218 2.77
0.90 1.09M 27.67 0.809 0.237 2.41

Table 9. Quantitative results of the ablation study over a on Mip-
NeRF 360 dataset [1], with Taming-3DGS [9] as the backbone of
DashGaussian. a = 1 equals removing the resolution scheduler,
which is the same as ‘+Prim-Sche.’ in Tab. 3 of the paper.

a NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓

Taming-3DGS [9] 2.02M 27.61 0.821 0.210 5.51

1 2.23M 27.85 0.824 0.208 4.60
2 2.05M 27.97 0.827 0.204 4.62
4 (Ours) 2.04M 27.92 0.826 0.208 3.23
6 2.00M 27.93 0.825 0.211 2.88
10 1.95M 27.91 0.824 0.213 2.79

9. Scene-wise Qualitative Results
As complementary to the Tab. 2 in the paper, we re-
port scene-wise quantitative results on all three datasets in
Tab. 5, Tab. 6 and Tab. 7, respectively.

10. Ablation on Hyper-parameters
In this section, we discuss how the hyper-parameters influ-
ence the performance of DashGaussian.

Momentum-based Primitive Budgeting. The two
hyper-parameters in Eq. 5 of the paper, γ and η, directly
affect Pfin and thus NGS. Before the ablation experiment,
we first analyze the inner connection between γ, η, and Pfin

to show how we select them.
Consider when Eq. 5 of the paper is stable and Pfin con-

verges to a constant, we can rewrite Eq. 5 of the paper, re-
sulting in

Pfin =
η

1− γ
P

(i)
add, (8)

which reveals the inner connection between Pfin, γ, η and
P

(i)
add. With the above equation, one can select γ and η based

on the typical P (i)
add to expect a maximum Pfin. However, as

introduced in Sec. 8.2 of the supplementary, NGS is sta-
ble with arbitrarily large Pfin. So selecting γ and η is to
make Pfin approximate to NGS, which effectively functions



Table 10. The report of large-scale reconstruction results on Ma-
trixCity dataset. Time is reported in minutes.

Method NGS ↓ PSNR↑ SSIM↑ LPIPS↓ Time↓
LargeBase 18.28M 26.51 0.858 0.186 44.22
+Ours 18.08M 26.59 0.865 0.182 25.82

the primitive scheduler to accelerate the optimization while
preventing under reconstruction with an over small Pfin.

Since changing γ and η is essentially equivalent to
changing the one parameter η/(1 − γ) in Eq. (8), we only
perform ablation on γ. The results are reported in Tab. 9.
As analyzed in Eq. (8), a larger γ indicates a larger Pfin, and
thus a bigger NGS, higher rendering quality, and more op-
timization time. To notice, even when γ = 1− where Pfin

is infinite (implemented as removing the primitive sched-
uler), the value of NGS is stable and significant acceleration
brought by our method is still observed.

Initial Resolution. The hyper-parameter a in Sec. 4.2 of
the paper decides the initial rendering resolution at the be-
ginning of optimization, where a larger a indicates a smaller
initial rendering resolution. We report ablation on a in
Tab. 8. Results show that the rendering quality is basically
insensitive to a, while the optimization time significantly
reduces with the increase of a.

11. Evaluation on Large-scale Reconstruction
We conduct evaluation for DashGaussian on large-scale
reconstruction with the MatrixCity [7] dataset, where the
backbone is Taming-3DGS [9] and the divide-and-conquer
strategy follows VastGaussian [8] to split the scene into 9
blocks, denoted as LargeBase in Tab. 10. The average train-
ing time on 9 blocks is reported (rendered under 1080P).
While slightly improving the reconstruction quality, Dash-
Gaussian helps the backbone to reduce the training time by
41.6% on each block. This experiment again strongly sup-
ports our claim that DashGaussian can serve as a general-
ized plugin to accelerate the optimization of different 3DGS
backbones and can well scale up from room-scale to large-
scale reconstruction.
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