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The appendix is structured as follows:

• §1 supplements additional implementation details.
• §2 analyzes additional quantitative results.
• §3 provides pseudo codes of major components of DIF-

FVSGG.
• §4 shows an additional diagram of the diffusion-based

reasoning process.
• §5 presents more visualization results.
• §6 demonstrates failure case analysis.
• §7 boardly discusses the limitations and social impact.

1. More Implementation Details
Conventional denoising diffusion models typically fol-

low a multi-step image-to-noise process, wherein noise is
progressively added and subsequently reversed to generate
refined outputs. However, these models are computation-
ally intensive. To mitigate this,DIFFVSGG adopts an effi-
cient forward diffusion strategy that decouples the traditional
multi-step image-to-noise process into two sub-processes:
image-to-zero and zero-to-noise. The projector heads are
implemented as two 1× 1 convolutional layers with ReLU
as the activation function.

2. Additional Quantitative Analysis

Additional Backbone. To validate the generalization capa-
bility of DIFFVSGG, we also conducted experiments using
ResNet-50 + DETR as an alternative backbone. The results,
shown in Table 2, demonstrate that DIFFVSGG achieves
state-of-the-art performance in SGDET, SGCLS and Pred-
CLS, particularly in PredCLS, where it surpasses OED [14]
with a notable improvement of 1.8%, 1.4%, and 1.4% in
R@10, R@20, and R@50 under with constraint setting.
In addition, under without constraint setting, DIFFVSGG
still achieves competitive performance in terms of both mR
and R metrics. In SGDET, the performance improvement of
R@10, R@20, and R@50 are 1.9%, 1.1%, and 1.3%, respec-
tively. These improvements verify the significant efficacy of
DIFFVSGG in leveraging its diffusion-based reasoning mech-
anism to capture object relationships and temporal dynamics
across frames.

Additional Dataset. To further assess the adaptability of
DIFFVSGG, we conducted experiments on the ImageNet-
VidVRD dataset as an additional benchmark. Compared to
AG [15] which mostly contains human-related interaction at
indoor scenes, ImageNet-VidVRD [17] focuses on a wider
range of relations not limited to human-centric interactions,
where the average number of relations and objects is 9.7
and 2.5 in each frame respectively. Videos in VidVRD are
selected with the criteria of whether they have clear visual
relations, containing 35 object categories and 132 relation
categories, respectively. Following the standard evaluation
task settings and metrics [18–20], we utilize relation tag-
ging (RelTag) and relation detection (RelDet) to evaluate the
performance of DIFFVSGG:

• RelTag is the task to find all object categories and exist-
ing relations. It needs to determine whether the top-K
classification results of triplets occur within the videos
without considering the localization of objects and rela-
tions. We employ top-K precision (P@k , where k = 1, 5,
10) as the evaluation metric.

• RelDet is a more comprehensive task for both evaluat-
ing object categories, trajectories and existing relations.
Same as AG, Recalls and mAP of relation detection are
used to evaluate our model. The threshold for viewing a
predicted box as a hit is 0.5.

The results, presented in Table 1, compare DIFFVSGG
with previous methods on the ImageNet-VidVRD dataset.
Compared to traditional graph-based methods such as
GCN [21] and STGC [22], DIFFVSGG achieves over a +10%
improvement, demonstrating its superiority in capturing con-
textualized information. Recent efforts such as BIG [18]
and HCM [23] highlight the importance of temporal rea-
soning in video relation detection. Comparisons with these
methods further validate the effectiveness of DIFFVSGG in
spatial-temporal reasoning modeling via denoising diffusion
process. Specifically, in RelDet task, compared to the previ-
ous best method, HCM [23], DIFFVSGG improves mAP by
+0.47%, R@50 by +0.13%, and R@100 by +0.06%. These
improvements highlight that DIFFVSGG is more effective in
detecting and tracking relations. Similar trend is observed in
the relation classification setting, RelTag, where DIFFVSGG
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Method
Relation Detection Relation Tagging

mAP R@50 R@100 P@1 P@5 P@10

VidVRD [17] 8.58 5.54 6.37 43.00 28.90 20.80
GSTEG [24] 9.52 7.05 8.67 51.50 39.50 28.23
MHRA [25] 13.27 6.82 7.39 41.00 28.70 20.95
GCN [21] 14.27 7.43 8.75 59.50 40.50 27.58
STGC [22] 18.38 11.21 13.69 60.00 43.10 32.24
Fabric [20] 19.23 12.74 16.19 57.50 43.40 31.90
VidVRD-II [19] 23.85 9.74 10.86 73.00 53.20 39.75
BIG [18] 26.08 14.10 16.25 73.00 55.10 40.00
HCM [23] 29.68 17.97 21.45 78.50 57.40 43.55
Ours 30.15 18.10 21.51 79.95 58.80 43.71

Table 1. Comparison of state-of-the-art VRD methods on ImageNet-
VidVRD [17].

surpasses HCM by +1.45% in P@1, +1.40% in P@5, and
+0.16% in P@10.

3. Pseudo Code
We provide pytorch-style pseudo code of the proposed

Graph Construction strategy in Algorithm 1 and Conditional
Temporal Reasoning in Algorithm 2.

4. Additional Diagram
We provide an additional diagram in Fig. 1 to illustrate

the core concept of iterative reasoning in DIFFVSGG. This
diagram highlights the step-by-step reasoning process for
scene graph generation, where the graph is progressively
updated and refined through a series of iterative steps that
integrate spatiotemporal cues.

5. Further Qualitative Results
In this section, we provide more qualitative comparison

with existing method DSG-DETR [13] on Action Genome
test [15]. It could be observed in Fig. 2/ Fig. 4 that DIF-
FVSGG performs better in distinguish difference between
hard relationship such as spatial relation: “in front of” vs
“behind”, and contact relation:“lying on” vs “sitting on”.

6. Failure Case Analysis
Due to the long-tail distribution of visual relationships

in Action Genome [15], the model struggles to accurately
capture tail classes in the text, leading to biased scene graph
generation. We summarize the most representative failure
cases in Fig. 3. As observed, the contact category ”writing”
is misclassified as ”touching.”

7. Discussion
Limitations. Although DIFFVSGG has demonstrated re-
markable performance, it has some limitations, particularly

Algorithm 1 Pseudo-code of Graph Construction in a
PyTorch-like style.

"""
I: input video sequence with frames Iˆ1, Iˆ2, ...,

Iˆt.
F_det: pretrained object detector.
N_max: Max number of objects in a frame
"""

# Detect
# B_t: set of bounding boxes detected in frame t.
# b_i : bounding box for object i.
# b_j : bounding box for object j
# O_t: set of class predictions for objects in

frame t.
# F_t: feature map extracted from frame t.
F_t, b_i, b_j, O_t = F det((Iˆt))

# Perform graph construction for each video frame
def construct adjacency matrix(F_t, b_i, b_j, O_t):

N_max = 100
D_embedding = 128
# extract instance-level feature for object i
F_o_i = roi align(F_t, b_i)
# extract union feature from union box of i and

j
F_union = roi align(F_t, torch.cat([b_i, b_j],

dim=1))
# F_b_i box-to-feature mapping for bounding box

of object j
F_b_i = box to map(b_j)

return torch.cat([F_o_i, F_union, F_b_j], dim
=-1)

# Initialize adjacency matrix
N_t = B_t.shape[0]
A_t = torch.zeros(N_max, N_max, D_embedding)

for i in range(N_t):
for j in range(N_t):

if i != j:
At[i, j] = construct adjacency matrix(F_t,

b_i, b_j, O_t):

# Pad to fixed size
if N_t < N_max:

padding = torch.randn(N_max-N_t, N_max,
D_embedding)

A_t[N_t:, :, :] = padding
A_t[:, N_t:, :] = torch.transpose(padding, 0, 1)

return A_t

its reliance on a multi-step denoising process. Achieving
high-quality outputs requires iteratively refining the predic-
tions over numerous steps, which can be time-consuming.
Drawing inspiration from recent advancements in step-
reduction techniques [26, 27], a potential future improve-
ment would be to incorporate these methods to reduce the
number of required steps and accelerate inference. Another
limitation of DIFFVSGG is its dependence on the quality and
distribution of training , which is also a common challenge
for other VSGG methods. Biased predicate sample distri-
butions within the dataset can lead to spurious correlations
between input object pairs and predicate labels, negatively
impacting the model’s accuracy, especially for long-tail cate-



Method
PredCLS SGCLS SGDET

R@10 R@20 R@50 mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50

ResNet-101+Faster-RCNN
RelDN [1] 20.3 20.3 20.3 6.2 6.2 6.2 11.0 11.0 11.0 3.4 3.4 3.4 9.1 9.1 9.1 3.3 3.3 3.3

TRACE [2] 27.5 27.5 27.5 15.2 15.2 15.2 14.8 14.8 14.8 8.9 8.9 8.9 13.9 14.5 14.5 8.2 8.2 8.2
VRD [3] 51.7 54.7 54.7 - - - 32.4 33.3 33.3 - - - 19.2 24.5 26.0 - - -

Motif Freq [4] 62.4 65.1 65.1 - - - 40.8 41.9 41.9 - - - 23.7 31.4 33.3 - - -
MSDN [5] 65.5 68.5 68.5 - - - 43.9 45.1 45.1 - - - 24.1 32.4 34.5 - - -

VCTREE [6] 66.0 69.3 69.3 - - - 44.1 45.3 45.3 - - - 24.4 32.6 34.7 - - -
GPS-Net [7] 66.8 69.9 69.9 - - - 45.3 46.5 46.5 - - - 24.7 33.1 35.1 - - -

STTran [8] 68.6 71.8 71.8 37.8 40.1 40.2 46.4 47.5 47.5 27.2 28.0 28.0 25.2 34.1 37.0 16.6 20.8 22.2
APT [9] 69.4 73.8 73.8 - - - 47.2 48.9 48.9 - - - 26.3 36.1 38.3 - - -

STTran-TPI [10] 69.7 72.6 72.6 37.3 40.6 40.6 47.2 48.3 48.3 28.3 29.3 29.3 26.2 34.6 37.4 15.6 20.2 21.8
TR2 [11] 70.9 73.8 73.8 - - - 47.7 48.7 48.7 - - - 26.8 35.5 38.3 - - -

TEMPURA [12] 68.8 71.5 71.5 42.9 46.3 46.3 47.2 48.3 48.3 34.0 35.2 35.2 28.1 33.4 34.9 18.5 22.6 23.7
DSG-DETR [13] - - - - - - 50.8 52.0 52.0 - - - 30.3 34.8 36.1 - - -

DIFFVSGG 71.9 74.5 74.5 48.1 50.2 50.2 52.5 53.7 53.7 37.3 38.4 38.4 32.8 39.9 45.5 20.9 23.6 26.2
ResNet-50+DETR

OED [14] 73.0 76.1 76.1 - - - - - - - - - 33.5 40.9 48.9 - - -
DIFFVSGG 74.8 77.5 77.5 53.3 56.1 56.1 54.0 54.9 54.9 40.7 42.5 42.5 34.7 41.9 47.3 24.7 27.3 28.4

Table 2. Comparison of state-of-the-art VSGG methods on Action Genome test [15] under the w constraint setting.

Method
PredCLS SGCLS SGDET

R@10 R@20 R@50 mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50

ResNet-101+Faster-RCNN
RelDN [1] 44.2 75.4 89.2 31.2 63.1 75.5 25.0 41.9 47.9 18.6 36.9 42.6 13.6 23.0 36.6 7.5 18.8 33.7

VRD [3] 51.7 54.7 54.7 - - - 32.4 33.3 33.3 - - - 19.2 24.5 26.0 - - -
Motif Freq [4] 62.4 65.1 65.1 - - - 40.8 41.9 41.9 - - - 23.7 31.4 33.3 - - -

MSDN [5] 65.5 68.5 68.5 - - - 43.9 45.1 45.1 - - - 24.1 32.4 34.5 - - -
VCTREE [6] 66.0 69.3 69.3 - - - 44.1 45.3 45.3 - - - 24.4 32.6 34.7 - - -

TRACE [2] 72.6 91.6 96.4 50.9 73.6 82.7 37.1 46.7 50.5 31.9 42.7 46.3 26.5 35.6 45.3 22.8 31.3 41.8
GPS-Net [7] 76.0 93.6 99.5 - - - - - - - - - 24.5 35.7 47.3 - - -

STTran [8] 77.9 94.2 99.1 51.4 67.7 82.7 54.0 63.7 66.4 40.7 50.1 58.5 24.6 36.2 48.8 20.9 29.7 39.2
APT [9] 78.5 95.1 99.2 - - - 55.1 65.1 68.7 - - - 25.7 37.9 50.1 - - -

TR2 [11] 83.1 96.6 99.9 - - - 57.2 64.4 66.2 - - - 27.8 39.2 50.0 - - -
TEMPURA [12] 80.4 94.2 99.4 61.5 85.1 98.0 56.3 64.7 67.9 48.3 61.1 66.4 29.8 38.1 46.4 24.7 33.9 43.7
DSG-DETR [13] - - - - - - 59.2 69.1 72.4 - - - 32.1 40.9 48.3 - - -

DIFFVSGG 83.1 94.5 99.1 66.3 90.5 98.4 60.5 70.5 74.4 51.0 64.2 68.8 35.4 42.5 51.0 27.2 37.0 45.6
ResNet-50+DETR

TPT [16] 85.6 97.4 99.9 - - - - - - - - - 32.0 39.6 51.5 - - -
OED [14] 83.3 95.3 99.2 - - - - - - - - - 35.3 44.0 51.8 - - -

DIFFVSGG 84.5 95.9 99.5 67.9 91.6 98.9 62.3 71.8 75.9 52.7 65.1 69.5 37.4 45.1 53.1 29.7 37.9 46.4

Table 3. Comparison of state-of-the-art VSGG methods on Action Genome test [15] under the w/o constraint setting.

gories. Fig. 3 illustrates several failure cases where biased
scene graphs are generated due to the long-tailed distribution
of predicates in the Action Genome dataset [15]. We aim
to address this limitation by introducing additional training
strategy to debias the predicate learning in our future work
Broader Impact. Currently, we have only demonstrated
the effectiveness of the denoising diffusion model in the
VSGG task. However, the temporal reasoning capabilities
across frames via diffusion offer valuable insights for design-
ing task-specific condition prompting in related vision tasks.
Integrating more informative cues from preceding frames
could be an effective starting point for improving current
frame predictions. The proposed continuous temporal rea-
soning approach could potentially be extended to tasks such
as Action Recognition (AR), Video Event Detection (VED),
Video-based Human-Object Interaction (V-HOI), and Multi-
Object Tracking (MOT).

On the negative side, it is important to acknowledge the
risks associated with DIFFVSGG regarding the generation
of false content and data bias. The generative nature of
the model during training poses the risk of creating false
information about individuals, potentially damaging their
reputation and privacy, and even leading to legal and ethical
challenges. Furthermore, if the dataset used for training con-
tains biases or imbalances, such as underrepresentation of
certain races, genders, or social groups, the model’s video
analysis could exacerbate existing prejudices and injustices,
resulting in biased and unfair decisions in real-world ap-
plications. For example, in security surveillance or crowd
analysis, this bias could lead to certain groups being dis-
proportionately monitored or wrongly accused, while others
remain under-identified, ultimately affecting social equity
and public trust in the technology.
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Figure 1. A diagram illustrating step-by-step reasoning process of DIFFVSGG.

Algorithm 2 Pseudo-code of Temporal Reasoning in a
PyTorch-like style.

"""
A_t_k: Noisy adjacency matrix at step k for frame

t.
A_t_prev_0: Denoised adjacency matrix from the

previous frame t-1.
A_t_k_minus_1: adjacency matrix at the end of the

k step in the denoising process for frame t
beta_t: Noise scheduling parameter for step k.
alpha_t: Alpha value for step k.
epsilon_theta: Denoising model.
epsilon_pred: The noise predicted by the denoising

model.
"""

# Perform temporal reasoning for each denoising
step

def temporal reasoning step(A_t_k, A_t_prev_0,
beta_t, alpha_t, epsilon_theta, k):

# Predict noise with temporal conditioning
epsilon_pred = epsilon theta(A_t_k, k,

A_t_prev_0)

# Compute reverse denoising step
A_t_k_minus_1 = (1 / torch.sqrt(alpha_t)) * (

A_t_k - (beta_t / torch.sqrt(1 - alpha_t))
* epsilon_pred)

return A_t_k_minus_1

# Iterate through denoising steps with temporal
conditioning

def temporal reasoning process(A_t_k, A_t_prev_0,
beta_schedule, alpha_schedule, epsilon_theta,
K):

# Iterate from step K to 1
for k in range(K, 0, -1):

A_t_k = temporal reasoning step(A_t_k,
A_t_prev_0, beta_schedule[k-1],
alpha_schedule[k-1], epsilon_theta, k)

return A_t_k
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Figure 2. More visual comparison with [13] in different time steps.
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Figure 3. Failure case due to dataset bias issue.
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