Dora: Sampling and Benchmarking for 3D Shape Variational Auto-Encoders

Supplementary Material

This supplementary material provides additional details
and results to complement our main paper. We first present
implementation details (Appendix A), followed by exten-
sive comparisons of VAE performance (Appendix B) and
3D generation comparisons between our method and base-
lines (Appendix C). We conclude with a discussion of the
limitations and future work in Appendix D.

A. More implementation details

Data Processing. Our training data consists of approx-
imately 400,000 3D meshes carefully filtered from Obja-
verse [8]. Following CLAY [22], we preprocess all meshes
to ensure watertight geometry. The dataset is randomly split
into training and test sets, where the test set is further uti-
lized to construct our Dora-bench benchmark.
Dora-bench Construction. We introduce Dora-bench,
a comprehensive benchmark designed to evaluate 3D re-
construction quality across different levels of geometric
complexity. The benchmark integrates data from multiple
sources: ABO [7], GSO [10], Meta [3], and Objaverse [8]
test set. The benchmark categorizes models into four detail
levels (Level 1 to Level 4), with approximately 800 sam-
ples per level. Due to the scarcity of highly detailed models
in ABO, GSO, and Meta datasets, Level 4 samples are pre-
dominantly sourced from the Objaverse test set.
Evaluation Metrics. We employ multiple complementary
metrics to comprehensively evaluate reconstruction quality.
To assess fine-grained geometric details, we compute the
Sharp Normal Error (SNE) by rendering normal maps from
22 fixed, evenly spaced viewpoints around each object using
nvdiffrast [13]. For quantitative evaluation of overall geo-
metric accuracy, we utilize the Kaolin library [11] to com-
pute two additional metrics: F-score, which measures the
coverage and completeness of the reconstructed shape, and
Chamfer Distance (CD), which evaluates the bi-directional
similarity between the reconstructed and ground truth point
clouds.
VAE Architecture and Training. Our VAE architecture
follows recent successful designs [14, 23], with 8 self-
attention layers in the encoder and 16 in the decoder. For
sharp edge sampling, we set the number of sampled points
Ny = 32768, target sharp points Nyegireq = 16384 and an-
gle threshold 7 = 30. Following 3DShape2VecSet [21], we
construct Qgpace by combining two types of point sampling:
points randomly sampled near the mesh surface and points
uniformly sampled within the spatial range of [-1,1].

We adopt the multi-resolution training strategy proposed
in CLAY [22], where the latent code length (LCL) N is

randomly selected between 256 and 1280 during training.
This approach facilitates progressive training in the subse-
quent diffusion stage. The KL divergence weight is set to
0.001. We train our Dora-VAE on the Objaverse [8] training
set using 32 A100 GPUs with a batch size of 2048 for two
days.

Diffusion Model for Image-to-3D. We apply our Dora-
VAE to the downstream image-to-3D task. Specifically,
we implement a conditional diffusion model based on the
DiT architecture [5, 17], similar to Direct3D [20] and
CLAY [22]. The model conditions on image features ex-
tracted by DINOv2 [16] from single-view images rendered
using BlenderProc [9]. Our diffusion model contains 0.39
billion parameters and is trained on 32 A100 GPUs for three
days.

B. More comparison of VAE

We present comprehensive quantitative and qualitative com-
parisons of our Dora-VAE against existing methods on the
Dora-bench dataset. In addition to the baselines discussed
in the main paper, we include 3DShape2VecSet [21], which
was trained on ShapeNet [4] rather than the larger Obja-
verse [8] dataset.

Quantitative Results. We see in Table SI,
3DShape2VecSet [21] consistently underperforms across
all detail levels, primarily due to its limited training data
affecting generalization capability.

Qualitative Evaluation. Figures S1 and S2 present vi-
sual comparisons for Level 3 and 4 examples (specific data
sources listed in Table S2). For XCube [18], we present
only its fine-tuned version (XCube®) as it slightly outper-
forms the original version. We see our Dora-VAE outper-
forms all other baselines. While XCube demonstrates rich
visual details, we observe that its geometry sometimes de-
viates from the ground truth mesh. We attribute this to
quantization errors introduced during mesh extraction using
NKSR [12], which explains its lower performance in met-
rics like chamfer distance (CD) and SNE despite visually
appealing results.

C. Image-to-3D Generation Comparison

We evaluate our Dora-VAE-based latent diffusion model
against state-of-the-art methods for single-image 3D gen-
eration. Our comparison includes 1) LRM-based methods:
MeshFormer [15] and CRM [19], as well as 2) industry so-
lution: Tripo v2.0 [2]. We use the official code and model
provided by CRM [19] for inference and obtain the results
of MeshFormer [15] and Tripo v2.0 [2] from their hugging-
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Xcube [18]  |>10000]98.968 98.799 98.615 98.226|95.525 93.872 92.322 85.365| 6.315 6.288 7.935 9.926 |1.579 1.432 1.430 1.679
Xcube [18] |>10000]99.393 99.794 99.824 99.079|96.753 95.535 93.422 87.365| 4015 4.142 5740  7.627 |1.543 1.408 1.259 1.639
VecSet [21] | 512 |94.768 88.890 80.126 59.347|77.545 67.929 55.516 34.619|27.380 42.075 100.975 159.151]2.939 3.056 3.470 6.034

Craftsman [14] |

256 ‘98.016 95.874 91.756 81.739‘87.994 82.549 73.000 57.379‘ 4389 9.129

14.530 33.441 ‘1.906

1.873 2.191 3.933

Ours "“°PCA 1280 {99.964 99.925 99.678 97.890(96.561 95.975 91.618 83.124| 2.236 2.506 4.444 6.432 |1.448 1.215 1.205 1.828
wiosESDCA | 1280 {99.944 99.814 97.294 96.779|95.977 94.623 88.406 79.240| 2.422 2983 3980 6.196 |1.496 1.313 1.352 2.207
Ours 99.507 98.986 96.669 89.577|93.272 90.466 82.386 68.669| 3.356 5.202 10.276 24.527 |1.555 1.410 1.618 3.035
urs 1280 {99.988 99.955 99.880 99.170|97.038 96.831 93.458 87.473| 2.097 2.500 3.945 5.265 |1.433 1.186 1.137 1.579
Table S1. Quantitative comparison in Dora-bench. T indicates the fine-tuning model that uses the same training data as ours.
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Meta/meta DTC_1_0_Pottery BOCJJI59SLH BlueHairFairy_3d

Table S2. Data sources for Figure S1 and S2

face demo and product website. Note that CLAY [22] and
Rodin Gen-1 [1] are excluded due to implementation un-
availability and usage limitations at submission time.

As demonstrated in Figures S3 and S4, our method
achieves superior results compared to LRM-based ap-
proaches in terms of both geometric detail and fidelity. The
performance limitations of MeshFormer and CRM can be
attributed to their lack of explicit geometric constraints,
leading to unstable or lower-quality reconstructions.

Our method achieves comparable geometric quality to
Tripo v2.0, a leading commercial solution, while using
significantly more constrained resources. Specifically, we
achieve these results with only three days of training on 32
A100 GPUs and approximately 400,000 training samples.
This remarkable performance, achieved with limited com-
putational resources and training data compared to com-
mercial solutions, demonstrates the effectiveness of Dora-
VAE in enhancing geometric detail and improving diffusion
model performance.

D. Limitations and Future Directions

While Dora-VAE achieves state-of-the-art reconstruction
quality with 1,280 latent code tokens, we identify several

limitations and promising directions for future research.
Current Limitations. The primary limitation of our
approach lies in maintaining high-quality reconstructions
when further reducing the number of latent tokens. This
challenge becomes particularly evident when comparing
with recent advances in 2D domain, such as Deep Com-
pression Autoencoder (DC-AE) [6], which has achieved re-
markable compression rates while preserving reconstruc-
tion quality.

Future Directions. We envision two main directions for
future work: 1) Enhanced Compression Efficiency: We
aim to explore novel techniques for increasing the com-
pression rate of 3D VAEs while maintaining reconstruc-
tion quality. This research direction could potentially bridge
the efficiency gap between 2D and 3D compression meth-
ods. 2) Advanced Diffusion Models: Building upon Dora-
VAE’s superior reconstruction capabilities, we plan to de-
velop more powerful image-to-3D diffusion models. We
believe that the improved reconstruction quality offered by
Dora-VAE can directly boost the performance ceiling of dif-
fusion models, enabling higher-quality generation results
under the same training conditions.



Figure S1. Qualitative comparison of the VAE reconstruction results. ™ indicates the fine-tuning model that uses the same training data as
ours.
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Figure S2. Qualitative comparison of the VAE reconstruction results. ™ indicates the fine-tuning model that uses the same training data as
ours.
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