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8. The derivation of Equation (20)
Based on Equation (3), we have
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(30)

Building upon the result presented in Equation (30), we
can leverage this gradient to guide the model towards
minimizing the discrepancy between the data distribution
pdata (x, y

+) and the model distribution pθ(x̃, y
+). Then we

have
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The inequality in the final step arises from the fact that∑
k ̸=y+ Pconf(y

+|x̃) ≥ Pconf(y
−|x̃). This derivation pro-

vides an upper bound for the difference between the expec-
tations under the data distribution and the model distribu-
tion.

9. More Results of DEBO
More results on different hyper-parameters λ1 and λ2 in
Equation (25), as illustrated in Table 4.

The impact of hyperparameter γ. As shown in Fig-
ure 2, we investigate the influence of different hyperparam-
eters γ in Equation (29) on the performance of OOD detec-
tion. The experimental results indicate that on the CIFAR10
and CIFAR100 datasets, when γ is fixed at 1, the AUROC
performance metric exhibits more excellent performance.
On the ImageNet-200 dataset, however, when γ takes a
value of 0.3, the OOD detection performance reaches its

Datasets λ1 λ2 FPR95↓ AUROC↑ AUPR-In↑ AUPR-Out↑ ID-ACC↑

CIFAR10

0.1 0.1 15.51 96.07 94.20 96.58 94.67
0.5 0.5 16.24 95.94 94.55 96.20 94.59
1.0 1.0 16.69 96.10 93.54 96.65 94.49
0.1 1.0 14.41 96.67 94.53 97.19 94.86

CIFAR100

0.1 0.1 47.93 85.77 80.94 87.11 75.98
0.5 0.5 38.13 88.42 83.45 89.45 75.48
1.0 1.0 33.73 89.76 86.30 89.97 76.26
0.1 1.0 43.68 87.35 81.72 88.39 75.06

ImageNet-200

0.1 0.1 41.12 88.10 83.24 87.03 86.26
0.5 0.5 42.70 86.65 82.03 85.00 85.96
1.0 1.0 42.59 86.99 82.46 86.16 85.27
0.1 1.0 42.12 87.09 82.77 86.29 85.87

Table 4. More results on different hyper-parameters λ1 and λ2 in
Equation (25).

optimum. This fully demonstrates that the introduction of
the hyperparameter γ can significantly enhance the model’s
adaptability to different data distributions.
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Figure 2. The impact of hyperparameter γ.

Different numbers of negative classes. We further con-
duct an ablation study to investigate the impact of varying
the number of negative classes in our proposed DEBO, as
illustrated in Table 5. Notably, when the number of negative
classes is set to 1, we deviate from the conditional entropy
minimization approach defined by Cen in Equation (24). In-
stead, we employ a cross-entropy loss function to maximize
the confidence of the (K+1)-th class. This modification can
be formally expressed as:

Ex̃∼pood(x)

[
− log Pconf(K + 1|x)

]
(33)

The remaining components of the DEBO loss function re-
main consistent across all configurations. We systemati-
cally adjust the negative classes to correspond with the dif-



Number of
negative classes FPR95↓ AUROC↑ AUPR-In↑ AUPR-Out↑ ID-ACC↑

CIFAR10
1 16.11 96.18 94.22 96.73 93.97
K 14.41 96.67 94.53 97.19 94.86

2K 18.10 96.03 93.22 96.68 94.81

CIFAR100
1 45.22 85.27 81.60 85.77 75.48
K 33.73 89.76 86.30 89.97 76.26

2K 43.41 86.01 81.31 86.38 74.38

ImageNet-200
1 41.77 87.85 82.92 86.58 86.09
K 41.12 88.10 83.24 87.03 86.26

2K 41.44 87.93 83.06 86.79 81.81

Table 5. Ablation study on the number of negative classes in
DEBO framework.

ferent class configurations examined in this analysis. As
evidenced in Table 5, our results demonstrate that setting
the number of negative classes to K yields the best perfor-
mance.

Different model architectures. In this section, compar-
ative experiments are further conducted using CIFAR100
as the ID training dataset on different model architec-
tures, specifically ResNet-34. As shown in Table 6, com-
pared with the comparison methods, our DEBO consistently
demonstrates superior performance.

Methods FPR95↓ AUROC↑ AUPR-In↑ AUPR-Out↑ ID-ACC↑
MSP 55.76 78.97 73.71 81.03 77.32
EBO 55.65 80.17 73.54 82.39 77.32

CIDER 57.83 79.35 72.66 81.11 N/A
OE 53.13 83.18 76.02 86.05 77.93

EBO (w. Daux) 48.47 84.72 77.41 87.14 72.03
UDG 67.03 74.58 67.21 76.81 72.60

MIXOE 66.65 74.60 67.08 77.09 75.51
MCD 54.86 78.40 72.53 79.24 75.68

Sdec (ours) 42.75 87.63 82.46 88.86 77.17

Table 6. Comparative experiments using different model architec-
tures (ResNet-34) with CIFAR100 as the ID training dataset.

Different OOD auxiliary training data. We further
conduct comparative experiments using different auxiliary
OOD training datasets with CIFAR100 as the ID training
dataset. This OOD dataset consists of data generated by
a generative model, as presented in the paper “DREAM-
OOD”[6]. As shown in Table 7, compared with the base-
line methods, our method consistently demonstrates supe-
rior performance.

Methods FPR95↓ AUROC↑ AUPR-In↑ AUPR-Out↑ ID-ACC↑
OE 42.40 83.81 78.07 87.50 76.76

EBO (w. Daux) 42.81 83.71 78.12 86.69 74.58
UDG 50.25 82.97 77.01 86.68 65.42

MIXOE 51.09 82.49 76.81 84.53 75.72
MCD 51.61 79.79 74.60 80.55 76.30

Sdec (ours) 38.91 86.25 81.40 88.42 76.24

Table 7. Comparative experiments using different auxiliary OOD
training datasets with CIFAR100 as the ID training dataset.

Methods ACC.↑ IS↑
JEM [9] 92.9 8.76

Ours 92.34 8.77

Table 8. Results on CIFAR10. The ACC. denotes the classifi-
cation accuracies and IS is widely used metric for evaluating the
performance of generative models.

10. Results of Dual Energy-Based Model
We employ the proposed Dual Energy-Based Model to train
a hybrid discriminative-generative model, demonstrating its
capability to jointly model both label and data distributions.
Table 8 presents the accuracy and generation performance
of our Dual Energy-Based Model using a Wide-ResNet 28-
10 backbone architecture on the CIFAR-10 dataset. Fig-
ure 3 illustrates the qualitative results of the generated data.

It is noteworthy that training this hybrid discriminative-
generative model necessitates increased computational re-
sources and time due to the incorporation of SGLD sam-
pling in the training process. Moreover, the primary fo-
cus of this paper remains on OOD detection, specifically
the Dual Energy-Based Model for OOD Detection (DEBO)
method proposed herein.

Figure 3. Generated images of our proposed Dual Energy-Based
Model.

11. Hardware and Software
All experiments are conducted using PyTorch and Python
3.8, leveraging the computational capabilities of NVIDIA
A6000 GPUs.

12. Results on Individual Datasets.
We present comprehensive comparative results of several
representative methods on each OOD test dataset, as shown
in Table 9, specifically for the CIFAR100 dataset.



Table 9. Detailed comparative experiments using CIFAR100 as the ID training dataset.

Methods OOD test datasets FPR95↓ AUROC↑ AUPR-In↑ AUPR-Out↑

MSP

cifar10 63.27 77.10 77.82 74.75
mnist 51.31 76.83 55.15 94.26
svhn 61.57 78.58 63.81 89.94

texture 65.21 75.34 84.15 60.49
places365 57.61 78.68 60.28 91.34

LSUN-resize 49.68 82.86 84.18 81.71
iSUN 50.99 82.02 84.76 78.67

LSUN-Crop 50.21 80.87 83.17 78.55

EBO

cifar10 64.22 77.42 77.62 74.80
mnist 51.21 75.63 53.80 93.43
svhn 53.13 84.12 71.53 92.64

texture 66.47 75.73 84.07 61.69
places365 58.26 79.14 60.06 91.37

LSUN-resize 41.13 87.81 88.49 87.11
iSUN 44.48 86.49 88.25 84.10

LSUN-Crop 41.01 84.36 86.79 81.10

OE

cifar10 62.58 75.87 77.70 71.26
mnist 46.03 85.83 62.54 97.26
svhn 41.61 88.88 79.41 95.17

texture 56.76 82.45 88.35 75.03
places365 58.32 78.88 60.24 91.52

LSUN-resize 48.44 86.44 86.61 86.86
iSUN 47.96 86.81 87.96 86.17

LSUN-Crop 47.56 83.15 85.01 80.75

EBO (w. Daux)

cifar10 68.38 73.94 74.46 70.28
mnist 51.77 89.70 57.40 98.31
svhn 47.80 84.73 74.40 93.39

texture 65.06 79.92 85.84 72.44
places365 64.16 77.12 55.72 90.96

LSUN-resize 38.82 87.90 89.08 85.61
iSUN 39.22 88.39 90.14 85.61

LSUN-Crop 27.72 92.80 93.32 91.75

CIDER

cifar10 81.24 68.06 66.54 65.94
mnist 65.30 76.30 46.11 95.43
svhn 19.12 97.06 92.04 99.00

texture 55.29 84.45 89.71 77.71
places365 69.00 75.53 52.36 90.74

LSUN-resize 64.17 77.81 78.15 76.10
iSUN 69.24 75.48 77.22 72.66
LSUN 64.51 81.99 80.42 83.61

Ours

cifar10 63.06 75.09 75.98 69.85
mnist 16.02 96.92 83.87 99.47
svhn 20.14 94.90 90.61 97.61

texture 50.08 86.61 91.12 80.24
places365 54.46 81.16 64.02 92.40

LSUN-resize 17.39 96.14 96.35 95.49
iSUN 14.91 96.63 97.11 95.65

LSUN-Crop 33.82 90.62 91.37 89.04
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