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A. Detailed Experimental Results
We provide detailed comparative results for the CI-
FAR100 [1] and CUB200 [9] datasets in Tables 1 and 2.
From these results, we can draw the following conclusions:
First, in terms of absolute performance, our methods, BiMC
or BiMC†, surpass all comparison methods. On the CI-
FAR100 dataset, our BiMC† achieves an improvement of
4.25 over the best comparison method, and on the CUB200
dataset, our method improves by 3.56 over the best com-
parator. Furthermore, our methods also achieve competitive
results on the forgetting metrics (PD), being the best ex-
cept for CLIP Zero-Shot on CIFAR100, while on CUB200,
our BiMC achieves the lowest PD metric. Both in terms of
absolute performance and PD, our framework demonstrates
outstanding performance. We also present the complete per-
formance curves in the ablation analysis of the semantic and
covariance-enhanced metric in Figure 1.
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Figure 1. Influence of different shot on incremental sessions

B. More Analyses on Hyper-parameter
In this subsection, we further analyze the impact of the
hyperparameters λT , λI , and τ . For λT , the results are
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shown in Figure 2a. When λT = 0, the method degenerates
to using only the CLIP Zero-Shot classifier results, with-
out fine-grained dynamic category information. As λT in-
creases, both the average performance and the performance
of the last session climb and gradually level off. This in-
dicates that through calibration within the textual modal-
ity, the classifiers for each category can absorb category-
specific knowledge, thereby enhancing accuracy. Regard-
ing λI and τ , as shown in Figure 2b, the method’s perfor-
mance is relatively robust to the effects of τ . When λI = 0,
the method degenerates to having no visual intra-modal cal-
ibration. As λI increases, the overall performance first in-
creases and then decreases, suggesting that an appropriate
λI can effectively calibrate for new categories.
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(a) Analysis on λT on miniImageNet
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Figure 2. Analysis on hyper-parameters λT , λI and τ .

C. LLM generated description
For the CIFAR100 dataset, we use the LLM descrip-
tions provided by [4]. For the miniImageNet and
CUB200 datasets, we use the LLM descriptions pro-
vided by [7]. In [7], the original descriptions gen-
erated by the large language model start with "An
object", similar to "An object which has a
pair of long, spiny antennae." In our exper-
iments, we found that directly using these descriptions for
calibration was not effective. Consequently, we replaced
"object" with the specific real category names, result-
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Table 1. Detailed session-wise accuracy, average accuracy Avg, and performance degradation PD comparison on the CIFAR100 dataset. V
and L denote the visual and language modalities, respectively. BiMC shows results from the bi-level calibration framework, while BiMC†

includes the ensemble classifier strategy. The highest scores in each session are highlighted in bold, and the second-highest are underlined.
An upward arrow (↑) indicates higher is better, and a downward arrow (↓) indicates lower is better.

Method Modality
Accuracy in each session(%) ↑

Avg ↑ PD ↓
0 1 2 3 4 5 6 7 8

CLIP Zero-Shot [5] L 74.77 73.12 72.56 71.08 70.46 70.41 70.58 70.06 68.93 71.33 5.84
Visual Prototype [8] V 75.88 72.78 71.01 68.52 66.55 64.84 64.12 62.71 61.03 67.49 14.85
TEEN [10] V 75.88 73.00 71.39 68.88 67.14 65.41 64.94 63.44 61.84 67.99 14.04
FeCAM [2] V 81.38 78.28 76.93 74.55 72.91 71.81 71.26 69.80 68.32 73.92 13.06

BiMC V-L 79.70 77.97 77.29 75.35 74.76 74.39 74.34 73.55 72.50 75.54 7.20
BiMC† V-L 81.98 79.74 78.84 77.00 76.11 75.68 75.33 74.61 73.18 76.94 8.80

Table 2. Detailed session-wise accuracy, average accuracy Avg, and performance degradation PD comparison on the CUB200 dataset. V
and L denote the visual and language modalities, respectively. BiMC shows results from the bi-level calibration framework, while BiMC†

includes the ensemble classifier strategy. The highest scores in each session are highlighted in bold, and the second-highest are underlined.
An upward arrow (↑) indicates higher is better, and a downward arrow (↓) indicates lower is better.

Method Modality
Accuracy in each session(%) ↑

Avg ↑ PD ↓
0 1 2 3 4 5 6 7 8 9 10

CLIP Zero-Shot [5] L 66.38 64.05 62.71 59.07 59.24 59.27 57.76 56.69 55.46 55.19 55.73 59.23 10.65
Visual Prototype [8] V 81.42 78.78 77.43 74.22 72.91 71.59 70.65 69.97 68.79 68.93 68.80 73.04 12.62
TEEN [10] V 81.42 79.16 77.49 74.60 73.26 71.75 70.68 70.21 68.90 69.28 69.12 73.26 12.30
FeCAM [2] V 82.26 79.48 77.76 74.68 72.86 71.10 69.92 69.17 67.61 67.89 67.40 72.74 14.86

BiMC V-L 82.16 79.99 79.04 76.10 75.07 74.04 73.13 73.08 71.88 72.26 72.25 75.36 9.91
BiMC† V-L 83.00 81.01 79.83 76.96 75.84 74.73 73.86 73.47 72.26 72.61 72.68 76.02 10.32

ing in descriptions like "A king crab which has
a pair of long, spiny antennae." This mod-
ified description is then used as a descriptor for the category.
We provide detailed examples of the descriptions generated
by the LLM and the category distribution for each dataset
in Table 3.

D. Analyses of Different CLIP Backbones
We analyze the comparative results under different
CLIP [5] backbone networks (ResNet-101, ViT-B/32, ViT-
B/16 and ViT-L/14) to demonstrate the broad applicability
of our framework. In Table 4, we present the experimental
results on the miniImageNet [6] dataset, where our frame-
work (BiMC and BiMC†) consistently outperforms compar-
ison methods across various CLIP backbones.

E. Analyses of Incremental Shots
To demonstrate the effectiveness of our method with vary-
ing numbers of incremental samples, we vary the k-shot
values of the incremental sessions on the miniImageNet
dataset. The results are presented in Figure 3, where the
gray line represents the CLIP-Zero Shot classifier, and the
colored lines indicate the outcomes with different numbers
of samples used during the incremental phase. Our method
proves effective across various shot numbers. It is evident

0 1 2 3 4 5 6 7 8
Incremental Session

81

83

85

87

89

91

93

95

97

A
cc

ur
ac

y
(%

)

0-shot
1-shot
3-shot
5-shot
10-shot
15-shot
20-shot

Figure 3. Influence of different shot on incremental sessions

that starting from 3-shot, our method’s performance reaches
a significantly high level, proving its effectiveness even with
a minimal number of samples. As the number of shots in-
creases, the performance also improves. This improvement
is attributed to the increasingly accurate domain priors rep-
resented by the visual prototypes, which in turn better cali-
brate the domain-agnostic linguistic knowledge.



Table 3. Comparison of the number of base classes (|Cbase|), number of total novel classes (|C inc|), and the total number of incremental
tasks (T ) across various datasets, alongside examples of category descriptions generated by LLMs.

Dataset |Cbase| |C inc| T LLM-generated description examples

CIFAR100 60 40 8

“A bicycle has two wheels, a frame, handlebars, and pedals.”
“A camel is a four-legged mammal with a long neck.”
“A forest is a large area of land covered with trees and other plants.”
“A plate is a flat, round piece of tableware on which food can be served.”
“A possum is a small, furry mammal with a long snout and a tail.”
“A streetcar typically has a low profile and runs on tracks in the roadway.”

miniImageNet 60 40 8

“A yawl which has a boom on both the main and mizzen sails.”
“A komondor which has a robust and muscular body structure.”
“A Tibetan mastiff which has a double coat with a heavy mane around the neck.”
“A ladybug which may have varying numbers of spots, from zero to more than twenty.”
“A catamaran which is typically wider than a traditional monohull boat.”
“A chime which may vary in size, from small handheld bells to large, floor-standing gongs.”
“An iPod which may have a clip on the back side in some models.”
“A scoreboard which may have a section for displaying timeouts left in a game.”

CUB200 100 100 10

“A Laysan Albatross with a large, pinkish beak that has a dark tip.”
“A Groove billed Ani with a white patch on the wing, visible in flight.”
“A Rhinoceros Auklet with red legs and webbed feet.”
“A Yellow headed Blackbird that is often seen perched on reeds and cattails.”
“A Cardinal with a loud, clear whistle, which is a common sound made by Cardinals.”
“A Gray Kingbird with a strong, direct flight with rapid wing beats.”
“A White breasted Kingfisher with a large, red, dagger-like beak.”

Table 4. Performance comparison across CLIP backbones: Best results are bolded, second-best are underlined.

Method Backbone Abase Alast Aavg. PD

CLIP Zero-Shot [5]

ResNet-101

85.98 81.24 83.56 4.84
Visual Prototype [8] 88.88 82.52 85.18 7.31
TEEN [10] 89.14 83.39 85.73 6.44
FeCAM [2] 91.35 85.02 87.78 6.90
BiMC 91.89 88.59 89.96 3.44
BiMC† 92.72 89.03 90.65 3.89

CLIP Zero-Shot [5]

ViT-B/32

87.77 84.13 85.59 3.77
Visual Prototype [8] 88.18 82.54 84.91 6.76
TEEN [10] 88.55 83.40 85.52 5.90
FeCAM [2] 91.17 85.36 87.89 6.66
BiMC 92.18 89.03 90.25 3.39
BiMC† 92.63 89.67 90.91 3.21

CLIP Zero-Shot [5]

ViT-B/16

91.25 86.15 88.76 5.12
Visual Prototype [8] 91.88 86.09 88.55 6.49
TEEN [10] 92.06 86.66 88.92 5.92
FeCAM [2] 93.71 88.20 90.66 6.22
BiMC 94.80 91.81 92.97 3.09
BiMC† 95.34 92.40 93.60 3.07

CLIP Zero-Shot [5]

ViT-L/14

94.17 89.68 91.78 4.44
Visual Prototype [8] 95.12 90.41 92.30 5.06
TEEN [10] 95.26 91.07 92.71 4.40
FeCAM [2] 95.49 91.44 93.14 4.61
BiMC 96.72 94.46 95.39 2.19
BiMC† 96.78 94.46 95.41 2.32



F. Analysis of Classifier Calibration
In the main paper, we explore a property of the calibrated
classifier: the bi-level calibrated classifier enhances pre-
diction confidence. One might question whether the pro-
posed cross-modal calibrated framework truly ”calibrates”
the classifier. Specifically, whether it prevents overconfi-
dent predictions. To investigate the calibration behavior of
the classifier, we plot the calibration curves of three classi-
fiers on the CIFAR-100 dataset, as shown in Figure 4. Intu-
itively, the closer the curve is to the diagonal, the better the
calibration. It can be observed that the Bi-level Calibrated
Classifier achieves better calibration compared to unimodal
classifiers.

Furthermore, we quantitatively analyze the calibration
using two standard calibration metrics: the Expected Cal-
ibration Error (ECE) and the Maximum Calibration Error
(MCE) [3], which quantify the discrepancy between the
model’s predicted confidence and the actual accuracy. It can
be observed that the classifier calibrated using the bi-level
framework achieves a higher degree of calibration.

Method ECE MCE

Textual Classifier 0.121 0.207
Visual Classifier 0.092 0.165
Bi-level Calibrated Classifier 0.062 0.136

Table 5. Comparison of ECE and MCE for three classifiers.
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Figure 4. Calibration curve on CIFAR100.
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