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1. Introduction

In the main paper, we introduced a novel framework for ex-
plainable saliency prediction that not only identifies impor-
tant image regions but also provides human-understandable
reasoning behind its predictions. Our approach leverages
a vision-language reasoning mechanism and a contextual
prioritization strategy to dynamically focus on semantically
critical information, bridging the gap between predictive ac-
curacy and interpretability. Unlike traditional saliency mod-
els that operate as black boxes, our method explicitly articu-
lates the reasoning process, making it suitable for scenarios
requiring high transparency and trustworthiness.

The supplementary materials provide further details and
additional results to support these findings:

1) Sec. 2 investigates the effect of different top-K pro-
totype selections on saliency prediction performance and
identifies the optimal number of prototypes that balances
computational cost and predictive accuracy.

2) Sec. 3 evaluates the impact of a range of back-
bone architectures, including variations of ResNet [25] and
ViT [21], on saliency and faithfulness metrics.

3) Sec. 4 presents the model comparison results, ana-
lyzing the performance of MiniCPM-V 2.6 [58], LLaVA-
1.5-7b [38], Llama-3.2-11B-Vision-Instruct [52], and GPT-
4o [28] across saliency metrics (e.g., NSS [44], CC [42],
AUC [3]) and faithful metrics (e.g., AUC-E [2], AOPC [6,
43], LOdds [46, 48]). The comparison highlights the
strengths and limitations of each model in addressing
saliency prediction.

4) Sec. 5 analyzes the limitations of our method, includ-
ing failure cases where the model is misled by semantically
similar objects and performance degradation on complex
scenes and ambiguous questions.

By presenting these additional details and results, this
supplementary document enhances the understanding of our
framework, showcasing its robustness, interpretability, and
generalizability.

2. Optimal Top-K Prototype Selection for Ex-
plainable Saliency

The selection of the optimal number of prototypes (top-K)
represents a crucial design choice in our framework, balanc-
ing the competing needs of predictive accuracy and model
interpretability. While a larger K value allows for a more
comprehensive representation of the input image’s seman-
tics, it can lead to increased computational cost and reduced
clarity in the explanations. Conversely, a smaller K value

simplifies interpretation but may sacrifice predictive accu-
racy by neglecting important semantic information.

Our approach incorporates both theoretical consider-
ations and empirical analysis to determine the optimal
K. Theoretically, the AiR dataset’s focus on task-driven
saliency suggests a relatively small number of key objects
or regions typically contribute to the final prediction. The
model’s Explicit Reasoning capability further refines this
by prioritizing semantically relevant proposals. Based on
these observations, we set an upper bound of K=10 for our
experiments.

The experimental results for intermediate values of K
(see Tab. 4) reveal that performance exhibits a peak at mod-
erate K values (e.g., 3 and 5). Specifically, saliency metrics
like NSS and AUC improve from 1.924 and 0.858 at K=2
to 1.946 and 0.860 at K=7. However, as K increases fur-
ther to 10, these metrics slightly decline to 1.935 and 0.858,
respectively. This can be attributed to the introduction of
redundant or irrelevant prototypes at larger K values, which
dilutes the focus of the model and increases noise in the
explanation. Conversely, smaller K values like K=2 lack
sufficient coverage of key semantic elements, resulting in
reduced saliency accuracy and interpretability.

Notably, K=3 shows a good balance between accuracy
and faithfulness, achieving near-peak performance in NSS
(1.942) and AUC (0.858) while maintaining high values in
AUC-E (0.713) and LOdds (-5.157). Based on these find-
ings, we select K=3 as the optimal value for our framework.
This choice is supported by the consistent high performance
across both saliency and faithfulness metrics and the im-
proved interpretability afforded by a smaller number of pro-
totypes. While larger K values may offer marginal perfor-
mance gains, they come at the cost of reduced explainability
and increased computational burden, outweighing their po-
tential benefits. The results show the effectiveness of our
approach in balancing performance and interpretability, a
crucial consideration for explainable AI systems.

3. Backbone Comparison

The choice of backbone architecture significantly impacts
both the predictive performance and the explainability of
our saliency model. To ensure a fair comparison, we care-
fully adapted ResNet [25] and ViT [21] architectures for
our task, addressing their inherent architectural differences.
This section details these adaptations and analyzes the re-
sulting performance trade-offs.



Table 4. Performance comparison across different top-K prototype configurations on the AiR dataset. Metrics include CC, AUC, NSS,
AUC-E, AOPC, and LOdds. The best value in each column is highlighted in blue, and the second-best value is highlighted in green.

K NSS CC AUC AUC-E ↓ AOPC ↑ LOdds ↓
2 1.924 0.689 0.858 0.695 0.756 -5.710
3 1.942 0.701 0.858 0.713 0.748 -5.157
5 1.938 0.693 0.859 0.730 0.736 -5.059
7 1.946 0.698 0.860 0.731 0.735 -5.050

10 1.935 0.691 0.858 0.727 0.732 -5.049

Table 5. Comparison of backbone architectures on saliency prediction tasks using both saliency and faithfulness metrics on the AiR dataset.

Backbone NSS CC AUC AUC-E ↓ AOPC ↑ LOdds ↓
ResNet50 1.942 0.701 0.858 0.713 0.748 -5.157
ResNet101 1.972 0.696 0.860 0.725 0.748 -5.144
ViT-B/16 1.741 0.638 0.839 0.720 0.667 -5.167
ViT-B/32 1.723 0.636 0.838 0.729 0.660 -5.189

3.1. Adapting Backbones for Saliency Prediction

To facilitate a direct comparison, we implemented several
modifications to ensure consistent feature resolution and
representation on the ResNet [25] and ViT [21] backbones.

ResNet Adaptation. We employed a dilated ResNet ar-
chitecture, inspired by DINet [57], known for its effective-
ness in low-level vision tasks. This involved replacing stan-
dard convolutional layers in layers 3 and 4 with dilated con-
volutions (dilation rates of 2 and 4, respectively). The stride
in these layers was set to 1 to maintain high-resolution fea-
ture maps, crucial for capturing fine-grained spatial details
essential for accurate saliency prediction. A 1x1 convolu-
tional adapter was then used to standardize the dimensions
of the output channel. We evaluated the ResNet-50 and
ResNet-101 architectures to explore the impact of network
depth.

ViT Adaptation. Unlike ResNet, ViTs employ a patch-
based approach, making dilated convolutions impractical.
Therefore, we adapted ViT by resizing the input image to
a standard resolution and applying bilinear upsampling to
the output features to match the resolution of the ResNet
outputs. A 1x1 convolutional adapter was similarly used
for channel standardization. We evaluated both ViT-B/16
and ViT-B/32 to explore the impact of patch size.

3.2. Results

Tab. 5 presents the performance of each backbone architec-
ture, evaluated using both saliency metrics (NSS, CC, AUC)
and faithfulness metrics (AUC-E, AOPC, LOdds). The re-
sults reveal a complex interplay between model capacity
and explanation quality.

ResNet-101, the deepest ResNet architecture, achieves
the highest saliency performance (highest NSS and AUC

scores). However, its faithfulness metrics (AUC-E and
LOdds) are comparatively lower than ResNet-50. This sug-
gests that its superior feature extraction capabilities may
overshadow the contribution of our reasoning modules,
making the model less transparent. The more powerful
backbone essentially “solves” the problem more indepen-
dently, leaving less for the explanation to clarify.

ResNet-50 provides a more balanced performance,
achieving strong results in both saliency and faithfulness
metrics. This highlights the importance of finding an ap-
propriate level of backbone complexity to effectively cap-
ture both high-level semantics and low-level visual details
without compromising explanation quality.

ViT models, despite the modifications, exhibit consis-
tently lower performance than ResNets. This is likely at-
tributed to the information loss inherent in the upsampling
process necessary to achieve comparable resolution. This
limitation highlights the importance of considering archi-
tectural limitations when selecting backbones for tasks re-
quiring fine-grained spatial information. The superior per-
formance of ViT-B/16 over ViT-B/32 is attributed to its
smaller patch size, retaining more spatial information.

In conclusion, the choice of backbone architecture sig-
nificantly impacts the trade-off between saliency prediction
performance and the fidelity of explanations. ResNet-50
emerges as a favorable choice, striking a strong balance be-
tween accuracy and interpretability. The results highlight
the need to carefully consider not only predictive power but
also the explainability of the chosen architecture when de-
veloping explainable AI systems.



Table 6. Comparison of vision language models on saliency prediction tasks using both saliency and faithfulness metrics on the AiR
dataset. The average number of semantic proposals per sample is also included. The average number of semantic proposals per sample is
also included.

Backbone NSS CC AUC AUC-E ↓ AOPC ↑ LOdds ↓ Avg. Proposals

MiniCPM-V 2.6 1.942 0.701 0.858 0.713 0.748 -5.157 2.47
LLaVA-1.5-7b 1.967 0.706 0.862 0.758 0.707 -4.684 3.31
Llama-3.2-11B-Vision-Instruct 2.009 0.720 0.863 0.742 0.736 -4.694 3.42
GPT-4o 2.027 0.729 0.863 0.708 0.775 -5.196 2.28

4. Vision-Language Model Comparison
In this section, we compare the performance of three
Vision-Language Models (VLMs) on the AiR dataset:
MiniCPM-V 2.6 [58], LLaVA-1.5-7b [38], Llama-3.2-11B-
Vision-Instruct [52], and GPT-4o [28]. This comparison
evaluates both saliency prediction metrics and faithful met-
rics, highlighting the trade-offs between semantic proposal
focus, generality, and model performance.

4.1. Compared Models

MiniCPM-V 2.6: An 8-billion parameter model designed
for efficient on-device deployment, demonstrating strong
performance in OCR, high-resolution image understanding,
and multilingual support.
LLaVA-1.5-7b: A 7-billion parameter model optimized for
instruction-based multimodal tasks. It leverages the Vicuna
architecture with a CLIP-ViT [47] vision encoder and an
MLP cross-modal connector. It was fine-tuned on various
visual instruction datasets.
Llama-3.2-11B-Vision-Instruct: An 11-billion parameter
instruction-tuned model that excels in visual recognition,
image reasoning, and question answering.
GPT-4o: A multimodal model with undisclosed parame-
ter count, though presumably larger than the other models
compared. It is optimized for instruction-following tasks
through end-to-end training across text, vision, and audio,
demonstrating strong performance in visual reasoning, se-
mantic comprehension, and multimodal question answer-
ing.

To ensure meaningful and format-compliant semantic
proposals, a consistent baseline prompt structure was em-
ployed. However, minor adjustments were made to account
for variations in model size and instruction-following capa-
bilities.

4.2. Results

Tab. 6 summarizes the performance of the three VLMs. Our
analysis reveals a trade-off between saliency performance
and faithfulness, likely influenced by the number and speci-
ficity of generated proposals.

While larger models like Llama-3.2-11B-Vision-Instruct

and GPT-4o demonstrate superior saliency prediction per-
formance (NSS: 2.009, 2.027; CC: 0.720, 0.729; AUC:
0.863, 0.863) compared to smaller models like MiniCPM-
V 2.6 and LLaVA-1.5-7b, this advantage introduces a po-
tential trade-off with faithfulness. Llama-3.2-11B-Vision-
Instruct generates significantly more proposals per sample
(3.42) than MiniCPM-V 2.6 (2.47, a 28% increase) and
LLaVA-1.5-7b (3.31, a 25% increase), while GPT-4o pro-
duces the most selective outputs (2.28), yet maintains su-
perior faithfulness (AUC-E: 0.708, LOdds: -5.196). This
suggests that GPT-4o’s focused semantic proposal gener-
ation enables it to balance saliency and faithfulness more
effectively than the other models.

The results suggest a trade-off between saliency and
faithfulness. Among the open-source models, MiniCPM-
V 2.6’s higher faithfulness stems from its more focused,
task-relevant proposal generation. Its smaller, more concise
output prioritizes critical concepts for saliency prediction.
Conversely, while the larger LLMs exhibit stronger general
instruction-following capabilities and generate more com-
prehensive proposals, leading to improved saliency, these
broader outputs may include less essential concepts, thus
reducing faithfulness. However, GPT-4o distinguishes it-
self by achieving strong saliency scores while maintaining
the best faithfulness metrics, indicating that it effectively
balances comprehensive semantic coverage with selectivity.
The difference in faithfulness scores likely reflects varia-
tions in how each model handles task-specific semantic pro-
posals. This underscores the importance of carefully bal-
ancing the breadth of semantic information captured with
task-specific objectives when designing saliency prediction
models. Future research should investigate strategies to op-
timize this trade-off, potentially through techniques that en-
hance the selectivity of larger models or improve the task-
specificity of smaller ones.

5. Limitations
Despite the strong performance of our approach, there are
still limitations that need to be addressed. In this section, we
analyze two key areas where our model faces challenges:
(1) failure cases where the model struggles due to semantic
similarity, and (2) performance degradation on harder sub-



sets with increased scene complexity and ambiguous ques-
tions.

5.1. Failure Cases

In complex scenes requiring precise attention allocation and
reasoning, current vision-language models (VLMs) still ex-
hibit notable limitations. As shown in Figure 6, when given
the question “Which object is to the left of the mug?”, the
VLM is misled at the visual level, incorrectly focusing on
the bowl and utensils while failing to identify the plate as
the correct answer.

This error occurs because the VLM relies heavily on
semantic associations when determining relevant objects.
During analysis, the model assigns higher importance to
objects that frequently co-occur with the mug, such as the
bowl, which is commonly present in kitchen scenes. At the
same time, the presence of utensils as additional distractors
further skews the model’s attention. Instead of accurately
identifying the most relevant object, the VLM overweights
these semantically related items, leading to an incorrect at-
tention distribution.

Moreover, the misinterpretation suggests that the model
prioritizes conceptual relationships over distinguishing be-
tween visually distinct entities. The plate, despite satisfying
the query condition, is overlooked, likely due to its weaker
association with the mug in the model’s learned priors. This
case highlights the challenge of integrating linguistic and
visual reasoning effectively, particularly in scenarios where
multiple related objects exist.

While the model’s inherent explainability enables us to
trace the source of the misinterpretation, addressing such
errors requires improving how the model balances semantic
reasoning with visual grounding. With the advancement of
vision-language models, more powerful architectures may
help mitigate these issues and improve robustness in com-
plex scenarios.

0.649 Bowl 0.351 Utensils

It was considered as it 
is located immediately 
to the left of the mug, 
which could be 
mistaken for a plate at 
first glance.

They were 
observed in the 
same area and 
might resemble 
plates if not 
closely examined.

Image Prediction Ground Truth+ =

Do you see 
any plates 
to the left 

of the mug?

Question

Figure 6. A failure case where the VLM is misled by semantic
similarity, focusing on common kitchen items instead of correctly
identifying the plate based on spatial positioning.

5.2. Hard Subset Analysis

To further evaluate the model’s limitations, we assess its
performance on two hard subsets:
• Hard Images: Images containing more than 30 objects.
• Hard Questions: Questions where human answer accu-

racy is below 70%.
Table 7 reports the results on these two subsets, compar-

ing them to the overall model performance on the dataset.

Subset NSS ↑ CC ↑ AUC ↑ AUC-E ↓ AOPC ↑ LOdds ↓
Overall (MiniCPM-V 2.6) 1.942 0.701 0.858 0.713 0.748 -5.157

Hard Images 1.793 0.700 0.857 0.712 0.694 -5.187
Hard Questions 1.732 0.682 0.843 0.734 0.642 -5.214

Table 7. Performance of our method on the AiR dataset, evaluated
on the Hard Image and Hard Question subsets. The results show
a decline in performance compared to standard evaluation, high-
lighting the increased difficulty of these subsets.

The results show a decline in both saliency prediction and
faithfulness metrics, reflecting the increased difficulty of
these cases.

For Hard Images, where the number of objects in the
scene increases, the model’s performance drops across all
metrics. The NSS score decreases from 1.942 to 1.793,
showing a significant reduction in alignment with human
attention. Similarly, CC drops from 0.701 to 0.700, and
AUC slightly decreases from 0.858 to 0.857, indicating
that the model struggles to maintain high saliency coher-
ence in cluttered environments. The faithfulness metrics
also reflect a decline, with AOPC dropping notably from
0.748 to 0.694, revealing reduced effectiveness when re-
moving high-saliency features. AUC-E remains nearly un-
changed (from 0.713 to 0.712), indicating no meaningful
difference in explanation consistency, while LOdds shifts
slightly from -5.157 to -5.187, showing minimal numerical
variation without a clear implication for attribution reliabil-
ity.

For Hard Questions, where human agreement is lower,
the performance drop is more pronounced. The NSS score
declines from 1.942 to 1.732, reflecting a weaker correlation
between model predictions and human gaze. CC also falls
more significantly from 0.701 to 0.682, showing that the
model’s saliency maps deviate more from human attention
patterns in ambiguous cases. AUC decreases from 0.858 to
0.843, further indicating reduced alignment in saliency es-
timation. On the faithfulness side, AUC-E increases from
0.713 to 0.734, pointing to greater inconsistency in expla-
nation robustness, while AOPC drops from 0.748 to 0.642,
suggesting that the removal of high-saliency regions has a
lower impact on model predictions. LOdds moves from -
5.157 to -5.214, but given its log-scale nature, this change
remains relatively small without a clear impact on reliability
trends.

These results indicate that both visual complexity and
question ambiguity introduce significant challenges for
saliency prediction and explanation reliability. The model
struggles more in cluttered environments and when human
attention patterns become less predictable, suggesting that
it relies on contextual priors that may not generalize well
to harder cases. As vision-language models continue to ad-
vance, handling such challenges will remain an important
direction.


