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Overview
In this supplemental material, we first present the detailed implementation of the proposed approach during training and
inference in Section A. We provide more analysis and discussions of our method in Section B. More experimental results are
shown in Section C.
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A. Implementations of FaithDiff
We describe the training and inference processes of FaithDiff in Algorithm 1 and Algorithm 2.

Algorithm 1 Training of FaithDiff.

Input: α, β: learning rates of LQ encoder and diffusion model with alignment module
Input: IHQ, ILQ, CText: high-quality image, low-quality image and text description
Input: ϵ̂θ, θlq, θec, θtext: latent diffusion model with alignment module, LQ encoder, VAE encoder and text encoder

1: while not converged do
2: Sample a batch of image data and text descriptions in {IHQ, ILQ, CText};
3: Sample time step t from Uniform(1, ..., T ) and noise ϵ from N (0, I);
4: Extract fHQ from IHQ via θec;
5: Extract fLQ from ILQ via θLQ;
6: Extract c from CText via θtext;
7: Add noise to fHQ to fetch xHQ

t ;
8: Compute L(ϵ, ϵ̂θ(x

HQ
t , fLQ, c, t));

9: Update parameters of θlq and ϵ̂θ with gradient descent:
θupdatelq ← θlq − α∇θlqL(ϵ, ϵ̂θ(x

HQ
t , fLQ, c, t));

ϵ̂updateθ ← ϵ̂θ − β∇ϵ̂θL(ϵ, ϵ̂θ(x
HQ
t , fLQ, c, t));

10: end while
Output:

Updated parameter θupdatelq and ϵ̂updateθ .

Algorithm 2 Inference of FaithDiff.

Input: ILQ, CText: low-quality image and text description
Input: ϵ̂θ, θlq, θdc, θtext: latent diffusion model with alignment module, LQ encoder, VAE decoder and text encoder

1: Sample noisy latent xHQ
T from N (0, I);

2: Extract fLQ from ILQ via θLQ;
3: Extract c from CText via θtext;
4: for t = T, ..., 1 do
5: Sample z from N (0, I) if t > 1, else z = 0;
6: Predict the noisy latent at time step t− 1:

xt−1 = 1√
αt
(xHQ

t − 1−αt√
1−ᾱt

ϵ̂θ(f
a
t , c, t)) + σtz;

7: end for
8: Generate restored images:

IRes = θdc(x
HQ
0 ).

Output:
Restored image IRes



B. In-Depth Analysis
In this section, we provide additional ablation studies and analysis on the proposed FaithDiff.

B.1. Efficiency of FaithDiff
In the main paper, we compare the run-time performance of diffusion-based SR methods [1, 3, 8–10] in Table 4. Note that
existing diffusion-based SR methods rely on ControlNet [12] to steer the diffusion process with the provided LQ image. In
contrast, benefiting from the proposed unified feature optimization strategy, our FaithDiff does not need ControlNet and is
able to adopt a simple yet effective alignment module to guide the diffusion process. To further demonstrate the efficiency of
FaithDiff, for a fair comparison, we compare with the baseline ‘FT EN & Fix DM’ in Table 6 of the main paper, which uses
ControlNet with the SFT layer [10], in terms of GPU memory consumption and inference time. The comparison results in
Table 7 show that our approach requires about 2.55 seconds on images of 1024× 1024 pixels, which is 2.31 times faster than
the ControlNet-based baseline. In addition, our approach reduces the GPU memory consumption by approximately 37% and
65% for the training and inference stages, respectively. Thus, our FaithDiff is more efficient.

Table 7. GPU memory consumption and inference time. #GPU Mem. denotes the maximum of GPU memory consumption, evaluated
using FP16 precision.

Method Training Inference
Batch Size DeepSpeed Stage #GPU Mem. (M) Inference Step Inference Time (s) #GPU Mem. (M)

Ours 10 2 50,990 20 2.55 9,301
FT EN & Fix DM 10 2 80,628 20 5.89 26,510

B.2. Comparison with ControlNet-based variants
We have compared against ControlNet in Tab. 6 (ours vs. ‘FT EN & Fix DM’). We further compare with ControlNet-XS in
Table 8, where our method performs better. The inference steps of all methods are set as 20.

Table 8. Quantitative comparison with different ControlNet-based variants.

Dataset DIV2K-Val RealPhoto60 Running
Time (s)Metric LPIPS ↓ MUSIQ ↑ MUSIQ ↑ CLIPIQA+ ↑

ControlNet-XS 0.3779 63.02 67.59 0.6235 2.61
ControlNet 0.3370 66.03 69.66 0.6412 4.62

Ours 0.3080 66.28 72.74 0.6527 2.55

B.3. More details and quantitative results on the RealDeg Dataset
In Section 4 of the main paper, to evaluate the performance of our method in real-world scenarios, we collect a dataset of
238 images with unknown degradations, consisting of old photographs, social media images, and classic film stills. Old
photographs include black-and-white ones and faded-color ones. For social media images, we first collect images from
Unsplash and then upload them to various social media platforms, undergoing one or multiple rounds of cross-platform
processing. Classic film stills are selected from films spanning from 1980s to 2000s. The RealDeg dataset contains diverse
categories of content including buildings, animals, and various natural elements. In addition, the image resolution is at least
720× 720 pixels. Some examples are shown in Figure 7. We further evaluate the proposed method on the RealDeg datasets
in Table 9.

Table 9. Quantitative comparison with state-of-the-art methods on RealDeg dataset. The best and second performances are marked in red
and blue, respectively.

Benchmarks Metrics Real-ESRGAN [7] BSRGAN [11] StabeSR [6] DiffBIR [3] PASD [9] SeeSR [8] DreamClear [1] SUPIR [10] Ours

RealDeg

MUSIQ ↑ 52.64 52.08 53.53 58.22 47.31 60.10 56.67 51.50 61.24
CLIPIQA+ ↑ 0.3396 0.3520 0.3669 0.4258 0.3137 0.4315 0.4105 0.3468 0.4327
PaQ-2-PiQ ↑ 70.29 70.20 69.54 70.97 66.07 71.55 70.88 69.87 72.41

NIQE ↓ 3.8825 4.7553 4.6347 4.2155 4.9009 4.4827 3.7912 3.9643 3.9001
MANIQA ↑ 0.5004 0.4895 0.4986 0.5487 0.4571 0.5241 0.5335 0.5248 0.5703



Old Photograph Social Media Image Classic Film Still

Figure 7. Examples from the RealDeg dataset.

B.4. More visualization results of DAAMs
We present more diffusion attentive attribution maps (DAAMs) [4] for different scenes. Figures 8-10 show that when exist-
ing diffusion-based methods struggle to extract accurate structural information from LQ images, the text embeddings may
generate low responses in the LQ features, hindering the ability of diffusion priors to restore faithful structures. In contrast,
our method can explore more useful information from LQ images and produce a more plausible DAAM [4].



(a) LQ Patch (b) DAAM for PASD [9] (c) DAAM for SeeSR [8] (d) DAAM for our method

(e) PASD [9] (f) SeeSR [8] (g) Ours
Figure 8. Visualization of DAAMs [4] for ‘pineapple’ from ‘An image of a colorful fruit basket surrounded by various fruits and nuts,
including a pineapple, red strawberries, yellow grapes, black blackberries, blue grapes, peaches, plums, and walnuts’.

(a) LQ Patch (b) DAAM for PASD [9] (c) DAAM for SeeSR [8] (d) DAAM for our method

(e) PASD [9] (f) SeeSR [8] (g) Ours
Figure 9. The DAAM [4] for ‘cars’ from ‘The image depicts a city street with a man on a scooter, cars parked along the sides, and trees
providing shade’.

(a) LQ Patch (b) DAAM for PASD [9] (c) DAAM for SeeSR [8] (d) DAAM for our method

(e) PASD [9] (f) SeeSR [8] (g) Ours
Figure 10. The DAAM [4] for ‘carvings’ from ‘The image shows a yellow upholstered chair on an ornate dark wooden platform, surrounded
by intricate carvings, giving a classic and grand atmosphere’.



B.5. Effects of inference steps and classifier free guidance (CFG)
We evaluate the effect of inference steps and classifier free guidance (CFG) by varying their values from 10 to 50 and 2 to
8, respectively, in Tab. 10. We empirically use 20 inference steps and set CFG scale as 5 as a trade-off between quality and
fidelity.

Table 10. Quantiative performance (MUSIQ / LPIPS) on the dataset of DIV2K-Val for various CFG and inference steps.

CFG
Steps 10 20 30 40 50

2 63.82 / 0.2954 63.80 / 0.2896 63.35 / 0.2958 63.26 / 0.2983 63.15 / 0.3011
5 66.71 / 0.3127 66.28 / 0.3080 65.95 / 0.3120 65.83 / 0.3139 65.72 / 0.3158
8 67.62 / 0.3334 67.05 / 0.3328 66.78 / 0.3365 66.64 / 0.3385 66.56 / 0.3404

B.6. Effect of the inference strategy on FaithDiff
We provide an ablation study on inference strategy [9] for PASD, SeeSR, and FaithDiff. Adopting fixed LDM may generate
features unrelated to the LQ features with random noisy inputs, so inference strategies are used to alleviate this problem. In
contrast, we align the LQ features with the noisy input by the proposed alignment module and unleash the LDM to explore
useful information and boost faithful image SR. In this way, we minimize the negative effect of random noisy inputs and
inference strategies have little impact on our method (see Tab. 11).
Table 11. Differences between with and without inference strategy (△ =w / IS - w/o IS) on synthetic datasets i.e., DIV2k-Val, where IS
denotes inference strategy.

Method PASD SeeSR Ours
Metrics △PSNR △MUSIQ △PSNR △MUSIQ △PSNR △MUSIQ
DIV2K 0.78 -4.85 0.35 -0.74 0.07 -0.03
LSDIR 0.58 -3.99 0.21 -0.46 0.04 -0.04

B.7. FaithDiff on SD 2-1
As shown in Table 12, our FaithDiff outperforms all competing methods using the SD 2-1 backbone, achieving improvements
of at least 1.55 in MUSIQ [2] and 0.09 in CLIPIQA+ [5] on the RealPhoto60 [10] benchmark.

Table 12. Quantitative comparison with state-of-the-art methods on real-world benchmarks. The best and second performances are marked
in red and blue, respectively.

Benchmarks Metrics Real-ESRGAN [7] BSRGAN [11] StabeSR [6] DiffBIR [3] PASD [9] SeeSR [8] DreamClear [1] SUPIR [10] Ours

RealPhoto60 [10] MUSIQ ↑ 59.29 45.46 57.89 63.67 64.53 70.80 70.46 70.26 72.35
CLIPIQA+ ↑ 0.4389 0.3397 0.4214 0.4935 0.4786 0.5691 0.5273 0.5528 0.6591

C. Quantitative Comparisons
In this section, we first present more visual comparisons with state-of-the-art methods [7, 9, 11] on synthetic images with
mild, medium and severe degradation effects in Figure 11 and Figure 12, where our method can generate faithful structures
(e.g., stripes in the first and third examples in Figure 11) and realistic details (e.g., grass in the second example and textures
of the butterfly in the fourth example in Figure 11).

Then, we present additional visual comparisons with state-of-the-art methods [1, 3, 7–10] on real-world benchmarks. As
shown in Figures 13-22, our proposed method can recover more faithful structural details.



(a) LQ patch (b) Real-ESRGAN [7] (c) BSRGAN [11]

LQ image with mild degradation (d) GT Patch (e) PASD [9] (f) Ours

(a) LQ patch (b) Real-ESRGAN [7] (c) BSRGAN [11]

LQ image with mild degradation (d) GT Patch (e) PASD [9] (f) Ours

(a) LQ patch (b) Real-ESRGAN [7] (c) BSRGAN [11]

LQ image with medium degradation (d) GT Patch (e) PASD [9] (f) Ours

(a) LQ patch (b) Real-ESRGAN [7] (c) BSRGAN [11]

LQ image with medium degradation (d) GT Patch (e) PASD [9] (f) Ours

Figure 11. Image SR results on examples from the synthetic datasets. The proposed method recovers much clearer structural details in (f).



(a) LQ patch (b) Real-ESRGAN [7] (c) BSRGAN [11]

LQ image with severe degradation (d) GT Patch (e) PASD [9] (f) Ours

(a) LQ patch (b) Real-ESRGAN [7] (c) BSRGAN [11]

LQ image with severe degradation (d) GT Patch (e) PASD [9] (f) Ours

Figure 12. Image SR results on examples from the synthetic datasets. The proposed method recovers much clearer structural details in (f).



(a) LQ Patch (b) Real-ESRGAN [7]

(c) PASD [9] (d) DiffBIR [3]

(e) SeeSR [8] (f) DreamClear [1]

(g) SUPIR [10] (h) Ours

Figure 13. Image SR results on an example from the RealPhoto60 [10] dataset. Compared to competing methods, our proposed method
recovers more realistic details (e.g., the strips of window in (h)).



(a) LQ Patch (b) Real-ESRGAN [7]

(c) PASD [9] (d) DiffBIR [3]

(e) SeeSR [8] (f) DreamClear [1]

(g) SUPIR [10] (h) Ours

Figure 14. Image SR results on an example from the RealPhoto60 [10] dataset. Compared to competing methods, our proposed method
recovers more faithful structural details (e.g., the faces in (h)).



(a) LQ Patch (b) Real-ESRGAN [7]

(c) PASD [9] (d) DiffBIR [3]

(e) SeeSR [8] (f) DreamClear [1]

(g) SUPIR [10] (h) Ours

Figure 15. Image SR results on an example from the RealDeg dataset. Compared to competing methods, our proposed method recovers
much clearer structures (e.g., the restored bamboo leaves at the bottom right in (h)).



(a) LQ Patch (b) Real-ESRGAN [7]

(c) PASD [9] (d) DiffBIR [3]

(e) SeeSR [8] (f) DreamClear [1]

(g) SUPIR [10] (h) Ours

Figure 16. Image SR results on an example from the RealDeg dataset. Compared to competing methods, our proposed method recovers
realistic image with clearer structural details (e.g., the restored grass, stone, and texture of the animal in (h)).



(a) LQ Patch (b) Real-ESRGAN [7]

(c) PASD [9] (d) DiffBIR [3]

(e) SeeSR [8] (f) DreamClear [1]

(g) SUPIR [10] (f) Ours

Figure 17. Image SR results on an example from the RealDeg dataset. Compared to competing methods, our proposed method recovers
much clearer structure details (e.g., the restored headlight and grille of a car in (f)).



(a) LQ Patch (b) Real-ESRGAN [7]

(c) PASD [9] (d) DiffBIR [3]

(e) SeeSR [8] (f) DreamClear [1]

(g) SUPIR [10] (h) Ours

Figure 18. Image SR results on an example from the RealDeg dataset. Compared to competing methods, our proposed method recovers
much clearer structure details (e.g., the restored feathers of a bird in (h)).



(a) LQ Patch (b) Real-ESRGAN [7]

(c) PASD [9] (d) DiffBIR [3]

(e) SeeSR [8] (f) DreamClear [1]

(g) SUPIR [10] (h) Ours

Figure 19. Image SR results on an example from the RealDeg dataset. Compared to competing methods, our proposed method recovers
much clearer structure details (e.g., the restored building and the road in (h)).



(a) LQ Patch (b) Real-ESRGAN [7]

(c) PASD [9] (d) DiffBIR [3]

(e) SeeSR [8] (f) DreamClear [1]

(g) SUPIR [10] (h) Ours

Figure 20. Image SR results on an example from the RealDeg dataset. Compared to competing methods, our proposed method recovers
more realistic details (e.g., the restored beard on the face in (h)).



(a) LQ Patch (b) Real-ESRGAN [7]

(c) PASD [9] (d) DiffBIR [3]

(e) SeeSR [8] (f) DreamClear [1]

(g) SUPIR [10] (h) Ours

Figure 21. Image SR results on an example from the RealDeg dataset. Compared to competing methods, our proposed method recovers
more realistic details (e.g., the hair of the lion in (h)).



(a) LQ Patch (b) Real-ESRGAN [7]

(c) PASD [9] (d) DiffBIR [3]

(e) SeeSR [8] (f) DreamClear [1]

(g) SUPIR [10] (h) Ours

Figure 22. Image SR results on an example from the RealDeg dataset. Compared to competing methods, our proposed method recovers
more realistic details (e.g., the restored grass and plane in (h)).
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