
Flash3D: Super-scaling Point Transformers through Joint Hardware-Geometry
Locality

Supplementary Material

7. Outdoor 3D Tasks
In this section, we provide more benchmark results on se-
mantic segmentation tasks and detection tasks, including
nuScenes [2, 10] and Waymo open dataset [35]. We also
provide ablation results by varying the attention scope sizes.

7.1. nuScenes Semantic Segmentation

We present the benchmarks on nuScenes semantic segmen-
tation for both validation set and test set. Similar to Sec-
tion 5, we train two variants of Flash3D by fixing it under
the same number of parameters and the same total memory
costs. We present the results in Table 4. Our results show
that Flash3D outperforms previous state-of-the-art results
on both validation set and test set. When we increase the
memory budgets for Flash3D to include more parameters,
Flash3D further improves the mIoU performance.

Table 4. Outdoor semantic segmentation on nuScenes validation
and test sets.

Methods nuScenes Val nuScenes Test

MinkUNet [4] 73.3 -
SPVNAS [37] 77.4 -
Cylinder3D [47] 76.1 77.2
AF2S3Net [3] 62.2 78.0
SphereFormer [18] 78.4 81.9
PTv2 [40] 80.2 82.6
PTv3 [41] 80.4 82.7
Flash3D (Same param.) 81.2 83.1
Flash3D (Same memory) 81.5 83.6

7.2. Waymo Semantic Segmentation

Waymo Validation Set We benchmark two variants of
Flash3D on Waymo Open Dataset semantic segmentation
task in Table 5. Flash3D consistently outperforms previ-
ous state-of-the-art results on both mIoU and mAcc met-
rics. Flash3D demonstrates further scaling when we add
more parameters.

Scaling up Attention Scopes On nuScenes semantic seg-
mentation task, we scale attention scope sizes at 1024, 4096,
and 8192 to benchmark PTv3 [41] and two variants of
Flash3D in Table 6.

PTv3 performance degrades when we scale up the at-
tention scope sizes. When we fix the parameter size,

Table 5. Waymo Val mIoU and mAcc comparison.

Methods mIoU mAcc

MinkUNet [4] 65.9 76.6
SphereFormer [18] 69.9 -
PTv2 [40] 70.6 80.2
PTv3 [41] 71.3 80.5
Flash3D (Same param.) 71.7 80.9
Flash3D (Same memory) 72.5 81.6

Flash3D performance peaks at 4096. And increasing atten-
tion scopes to 8192 degrades the task performance.

When we fix the memory budgets and add more param-
eters to Flash3D, increasing attention scope sizes improves
the task performance.

Table 6. Attention Scope impacts on nuScenes semantic segmen-
tation on the validation set

Attention Scope 1024 4096 8192

PTv3 [41] 80.4 80.2 79.1
Flash3D (Same param.) 80.6 81.2 80.1
Flash3D (Same memory) 80.2 81.5 81.7

We observe a similar trend when scaling up the attention
scopes on Waymo validation set. The improvements of scal-
ing up attention scopes of Flash3D are more pronounced on
Waymo validation set since Waymo has denser point clouds
and more data.

Table 7. Attention Scope impacts on Waymo semantic segmenta-
tion on the validation set mIoU.

Attention Scope 1024 4096 8192

PTv3 [41] 70.8 70.5 70.2
Flash3D (Same param.) 71.5 71.7 71.3
Flash3D (Same memory) 71.6 72.1 72.5

7.3. Waymo Detection Task

We benchmark Flash3D on Waymo detection task for a
single-frame setting in Table 8. We show that Flash3D out-
perform both PTv3 and SST [9] methods on detection tasks
by a notable margin due to our flexible attention scope shap-
ing.



Table 8. Waymo Object Detection on a single frame

Waymo Obj. Det. SST PTv3 Flash3D (Same param.)

Mean L2 mAPH 64.8 70.5 71.6

8. Hardware Scalability
8.1. H100 Training and Inference Costs

We present training and inference costs of Flash3D. Similar
to Section 5, we train two variants of Flash3D: one with the
same parameter sizes as PTv3 [41], and one with the same
inference memory costs as PTv3 [41]. We present training
latencies and inference latencies on H100 in Table 9. For
fair comparisons, we report training latencies as the time to
train an iteration when batch size is 1.

Scalability H100
(nuScenes) Params. Memory Inf Latency Train Latency mIoU
PTv3 [41] 46.2M 1.2G 30.2ms 77.6ms 80.4
Flash3D 46.2M 0.5G 13.4ms 33.8ms 81.2
PTv3 [41] 46.2M 1.2G 30.2ms 77.6ms 80.4
Flash3D 129.4M 1.2G 15.1ms 37.9ms 81.5

Table 9. Model scalability comparisons of PTv3 and Flash3D on
H100 GPUs by fixing model parameter sizes and memory quotas
respectively. Dark cells indicate fixed budgets. We fix attention
scopes of all Flash3D models at 4096. mIoU indicates the seman-
tic segmentation performance on nuScenes validation set.

8.2. H100 Utilization Profiling

In Section 5, we describe key metrics and evaluate hard-
ware scalability of Flash3D on General Compute, Tensor-
Core Matrix Multiplication, and Memory Bandwidth. In
this section, we further elaborate on the implications of the
metrics and present profiling results on H100 GPUs. We
keep the same setting as Section 5 to fix PTv3 and Flash3D
at the same parameter sizes for profiling results. Gener-
ally speaking, H100s are more memory bandwidth-starved
and Flash3D shows further improvements over PTv3 [41]
on key metrics due to proper treatment of memory locality.

General Compute SM cores are the computing tiles for
GPUs and H100 has 132 SM cores3. The aggregated SM
utilization is a key measure of overall usage. For more de-
tailed illustrations of GPU architectures and hierarchies, re-
fer to FlashAttention [7] and THUNDERKITTENS [34].

SM issuing rates focus more on the instruction front-end
utilization. A low SM issuing rate indicates the workloads
are not properly divided among threads or the computing
units are waiting for data. Flash3D carefully spreads work-
loads among threads and SMs and demonstrates significant
improvements on SM issuing rates in Figure 12.

3Different versions of H100 offer options of 144 SMs, 132 SMs, and
113 SMs.

Figure 12. SM Utilization vs. Input Sizes for Flash3D and PTv3.
We show the overall SM active rates on the left and more specific
SM issuing rates on the right.

TensorCore Matrix Multiplication H100 TensorCores
demand more data from other components of the GPU to
saturate. H100 poses harder barriers than A100 does in
terms of TensorCore saturation [34]. PTv3 consistently
demonstrates TensorCore utilization less than 5%, which
wastes over 95% of GPU resources and investments as
shown in Figure 14.

Memory Bandwidth H100 computing throughput dis-
proportionally improves over its memory bandwidth [34].
Therefore, H100 demands more realized memory band-
width to keep its computing tiles working. Flash3D care-
fully treats memory locality and enjoys a scalable usage of
memory bandwidth, shown in Figure 15.

9. Bucket Swin Attention Scope Details

We further visualize the attention scope construction in
Fig. 13. The color of each point in the top-left figure in-
dicates which bucket it is assigned to. The other figures de-
pict how a single attention scope changes under shifting and
striding operations for each of two hash functions (Hash-
ZM and Hash-ZD).

10. Implementation Details

In this section, we further elaborate on implementation de-
tails and algorithm designs from Section 4 and Section 5.
Our open-source implementation is provided in the offi-
cial repository at https://github.com/liyanc/
Flash3DTransformer.

https://github.com/liyanc/Flash3DTransformer
https://github.com/liyanc/Flash3DTransformer


Bucket Ids One Attention Scope

↑Hash-ZM ↓Hash-ZD

Shifted Scope (Swin)

↑Hash-ZM ↓Hash-ZD

Strided Scope

↑Hash-ZM ↓Hash-ZD

Figure 13. Illustration of bucket-based attention scopes: (left) Bucket Ids, (center-left) One Attention Scope, (center-right) Shifted Scope
(Swin), and (right) Strided Scope.

Figure 14. TensorCore Active Rates vs. Input Sizes for Flash3D
and PTv3.

10.1. PSH with Two-Stage Counters

In our main PSH algorithms, we used AtomicInc,
AtomicDec on globally visible memory (DRAM), which
establishes a global linear order among all threads on a
GPU, and hence contiguous and unique indices for all
points. We implemented our naive version of PSH algo-
rithms as described in Section 4. The naive version demon-
strated acceptable latencies, roughly at 0.4ms for 120k
points.

However, our rebalancing algorithm generates a signifi-
cant amount of memory traffic requiring global atomic guar-
antees, which throttles the overall throughput. Therefore,
we instead implemented a two-stage-counter version of our
PSH algorithms, where we temporarily break the global lin-
ear order and coalesce temporary copies in batches.

Specifically, we create temporary copies of bkt ctr
within local L1 cache blocks (shared memory), which

Figure 15. DRAM Read Bandwidth Usage vs. Input Sizes for
Flash3D and PTv3.

allow fast localized atomics, which we will refer to as
AtomicInc block and AtomicDec block. We usu-
ally have 256 buckets and the counters typically have a
shape of UInt32[256], costing 1024 bytes, so they fit in
local L1 cache blocks.

We break our original counter AtomicInc into three
steps: local AtomicInc block, bulk commit to global
memory AtomicAdd, and rebasing bucket offset:

Local Atomic Operations We initialize local
copies bkt ctr local with zeros. When a GPU
thread representing a point needs AtomicInc, it
should AtomicInc block(bkt ctr local) to obtain
bucket off local.

Bulk Commit We hold all threads in a block to
a block-wise synchronization point and make sure



every thread has finished their AtomicInc block.
Then we AtomicAdd(bkt ctr,bkt ctr local) to obtain
bkt rebase offset. Recall that bkt ctr local starts from ze-
ros, so it represents a contiguous range of indices based
on a future global version to be determined. When
we AtomicAdd(bkt ctr, bkt ctr local), we establish the
starting point of the specific local range of indices in terms
of the global counters. At the same moment, we obtain a
snapshot of global counters before AtomicAdd, which are
exactly the bases for this bkt ctr local. Therefore, we refer
to this global counter snapshot as bkt rebase offset.

Rebasing bucket offset Recall that we have
bucket off local in the first step, which needs to be
adjusted and merged to the global linear order. Similar to
our discussion in the second step, bucket off local repre-
sents an offset starting from an undetermined global point.
At the end of the second step, we determine this global
point as bkt rebase offset. Therefore, we can finalize
bucket offset = bucket off local + bkt rebase offset.

In Section 5, we report metrics from our two-stage-
counter PSH algorithms. Our two-stage-counter PSH al-
gorithms further localize memory traffics within GPU tiles
and boost the throughput.

10.2. ThunderKittens

THUNDERKITTENS [34] is a CUDA library that provides
convenient tools to implement DL kernels that demand Ten-
sorCore throughputs, such as FlashAttention algorithms [6,
7, 32]. Original FlashAttention algorithms have highly
complex implementations and require lots of engineering
hours for proper implementations4.

THUNDERKITTENS [34] simplifies FlashAttention im-
plementations by providing numerical operations and ma-
trix multiplications on 16× 16 matrix tiles. Our implemen-
tation uses an early version of THUNDERKITTENS released
on May 20245.

Current version of THUNDERKITTENS [34] incorporates
a Load-Compute-Store-Finish (LCSF) pipeline to further
optimize for newer GPUs including H100. LCSF rectifies
the asynchronous producer-consumer paradigm of THUN-
DERKITTENS. With LCSF updates, THUNDERKITTENS
can oversubscribe resources within SM, better saturate Ten-
sorCores, and outperform FlashAttention-3 in several set-
tings [32, 34].

Unfortunately, Flash3D builds on top of FlashAttention-
2 [6] and an early version of THUNDERKITTENS, and we
did not have a chance to incorporate the latest version of
THUNDERKITTENS. We aim to incorporate newer THUN-
DERKITTENS and FlashAttention-3 [32] in our future work
to further boost Flash3D throughput and efficiency.

4https://github.com/Dao-AILab/flash-attention
5https://github.com/HazyResearch/ThunderKittens

10.3. Bucket-Swin

We describe the implementation details of our Bucket-
Swin attention based on THUNDERKITTENS for Alg. 3 and
Alg. 4. We focus on explaining the zero-overhead nature of
Bucket-Swin attention. By “zero-overhead,” we mean that
our Bucket-Swin attention only incurs MHSA costs with-
out additional memory or latency. Since THUNDERKIT-
TENS loads inputs in tile-sized chunks, we achieve zero-
overhead bucket-swin by simply loading into L1 the tiles
corresponding to the set of buckets among which we wish to
compute attentions, as detailed in the following paragraphs.

After our PSH algorithms, point features are represented
in a contiguous array FP16[N, d], where N is the number
of points and d is the number of feature dimensions. Our
point feature array is a concatenation of buckets along the
N dimension. Therefore, any bucket-size-aligned sub-array
represents a bucket. For example, when bucket size is 512,
a sub-array FP16[512 : 1024, d] contains all feature vectors
of a bucket.

The goal of Bucket-Swin attention is to associate ar-
bitrary buckets to an attention scope and compute MHSA
within this logical scope. Notably, our Bucket-Swin at-
tention does not introduce additional shuffling of the fea-
ture array. For a point i, its input features are located at
FP16[i, d] and its output features are located at FP16[i, d]
as well. Such fixed layout is the key to our zero-overhead
Bucket-Swin attention.6

We describe how to vary attention scopes without shuf-
fling point feature indices. As described above, a bucket-
aligned sub-array represents a bucket. Consider an exam-
ple of computing MHSA among two buckets: Bi and Bj ,
where Bi, Bj include contiguous point indices of buckets
i, j respectively. Before MHSA, we map point features
FP16[i, d] into Q ∈ RN×d, K ∈ RN×d, and V ∈ RN×d.
Point features of Bi are FP16[Bi, d]. Query-key-value
triplets of Bi are Q[Bi, d], K[Bi, d], and V [Bi, d]. We en-
force that bucket sizes are all multiples of 16 so Q[Bi, d],
K[Bi, d], and V [Bi, d] can be tiled into 16 × 16 sub-
matrices by THUNDERKITTENS.

FlashAttention-2 [6] operates on 16 × 16 tiles. As long
as memory layouts for Q,K, V arrays suit 16 × 16 tiling,
FlashAttention-2 operates on the original principles and as-
sumptions. In our example, Q,K, V arrays for buckets Bi

and Bj support 16 × 16 tiling. Therefore, we have full
knowledge of tile addresses for buckets Bi and Bj . To
compute MHSA output for Bi under a scope of {Bi, Bj},
we fetch tiles from Q[Bi, d], K[Bi, d], K[Bj , d], V [Bi, d],

6In Figure 3, we illustrate bucket-swin by pointing memory blocks to
the destination memory blocks to best convey the conceptual model. In
practice, we don’t incur physical memory block rewriting but instead im-
plement address redirection during FlashAttention-2 computation. There-
fore, we have fixed memory layout and zero-overhead bucket-swin atten-
tion.

https://github.com/Dao-AILab/flash-attention
https://github.com/HazyResearch/ThunderKittens


Algorithm 3 Bucket-Swin Attention Forward Pass

Require: BF16 matrices Q,K,V ∈ RN×d in HBM, bucket size B, scope indices, and other parameters.
1: Divide Q into buckets according to scope indices and bucket size (instead of fixed Br blocks); similarly divide K,V

using the bucket scheme.
2: Divide the output O ∈ RN×d and logsumexp L ∈ RN into corresponding buckets.
3: for each bucket index i do
4: Load Qi from HBM to on-chip SRAM.
5: Scale Qi by 1√

D
.

6: On-chip, initialize O
(0)
i ← 0, ℓ(0)i ← 0, m(0)

i ← −∞.
7: for each corresponding bucket index j do
8: Asynchronously load Kj ,Vj from HBM to on-chip SRAM using tile load.
9: Compute S

(j)
i = QiK

T
j .

10: Compute m
(j)
i = max

(
m

(j−1)
i , rowmax(S

(j)
i )
)

and P̃
(j)
i = exp

(
S
(j)
i −m

(j)
i

)
.

11: Compute ℓ
(j)
i = em

(j−1)
i −m

(j)
i ℓ

(j−1)
i + row sum(P̃

(j)
i ).

12: Update O
(j)
i ←

(
em

(j−1)
i −m

(j)
i ⊙O

(j−1)
i

)
+ P̃

(j)
i Vj , using MMA-based row scaling and matrix multiplication.

13: end for
14: Compute Oi = diag

(
ℓ
(Tc)
i

)−1
O

(Tc)
i .

15: Compute Li = m
(Tc)
i + log

(
ℓ
(Tc)
i

)
.

16: Write Oi and Li to HBM.
17: end for
18: return O and L.

Bucket Indexing Formulas: Let qbuck seq = ⌊ qo blk iter/(blocks per bucket)⌋, qbuck id = scope inds[qbuck seq],
and qbuck blk off = qo blk iter mod (blocks per bucket).

V [Bj , d] to L1 cache blocks. The fetching step does not
incur overheads other than plain FlashAttention-2 [6]. The
only difference to FlashAttention-2 is redirecting tile ad-
dresses according to our bucket scheme. Then the compu-
tation and output steps are the same as FlashAttention-2.
Therefore, our Bucket-Swin attention incurs no overheads
on top of FlashAttention-2.

10.4. Fused FlashAttention-2 and Training

We precisely define our fused zero-overhead Bucket-Swin
attention in this section. We describe both forward and
backward passes for Bucket-Swin attention. The backward
pass takes no special treatment since Bucket-Swin attention
acts like common windowed attentions.

We provide the Bucket-Swin attention forward pass in
Alg. 3 and the backward pass in Alg. 4. We omit the
cp.async pipelining procedures from Alg. 3 and Alg. 4
for best clarity.

10.5. In-bucket Pooling

In Section 4.2, we motivate to replace the grid pooling oper-
ation [40] by our in-bucket pooling to capitalize on the ex-
isting geometric locality of buckets. Our in-bucket pooling
provides higher throughput by removing global serializa-
tion and neighborhood finding. In addition, our in-bucket

pooling has a fixed pooling ratio to offer smoother memory
access patterns that can be achieved on GPU tiles. In this
section, we describe further algorithm and implementation
details of our in-bucket pooling.

Our main PSH algorithm establishes a linear order
based on globally visible counters. However, our in-
bucket pooling sub-bucket construction operates within lo-
cal SMs (1024 points for a ThreadBlock). In contrast to
our main PSH rebalancing algorithm, our in-bucket pool-
ing sub-bucket construction includes three steps: initial
sub-buckets, new sub-bucket allocation, find new sub-
bucket.

Initial sub-buckets Similar to our main PSH algorithm,
we use a hash function to assign each point a subbuck id.
We keep a ThreadBlock counter to allocate subbuck id.
Since points have uneven distributions among sub-buckets,
sub-buckets have points no less than the desirable capac-
ity ρ. Similarly, allocated subbuck id is no more than the
desirable total sub-buckets.

New sub-bucket allocation Then we examine each sub-
bucket to relocate points beyond the requested capacity ρ.
For each point that’s beyond the sub-bucket capacity ρ, we
allocate a new sub-bucket with id subbuck id. We treat all



Algorithm 4 Bucket-Swin Attention Backward Pass

Require: BF16 matrices Q,K,V,O,dO ∈ RN×d and vector L ∈ RN in HBM; output gradients dQ,dK,dV ∈ RN×d;
bucket size B, scope indices, and other parameters.

1: Divide Q,K,V,O,dO, and L into buckets according to scope indices and bucket size (instead of fixed block sizes).
2: Initialize dQ← 0 in HBM and partition dK,dV into corresponding buckets.
3: Compute D = rowsum(dO ◦O) ∈ Rd and partition D accordingly.
4: for each bucket index j over K/V blocks do
5: Load Kj ,Vj from HBM to on-chip SRAM.
6: Initialize on-chip accumulators: dKj ← 0, dVj ← 0.
7: for each corresponding bucket index i over Q blocks do
8: Load Qi,Oi,dOi,dQi, Li, and Di from HBM to on-chip SRAM.
9: Compute bucket indices for Q as qbuck seq = ⌊q blk iter/(blocks per bucket)⌋, qbuck id = scope inds[qbuck seq],

and qbuck blk off = q blk iter mod (blocks per bucket).
10: Compute tile offsets based on these bucket indices and the warp ID; set pointers for the current tiles of

Q,O,dO,dQ.
11: Asynchronously load these tiles using tile load (with double-buffering as needed).
12: On-chip, compute S

(j)
i = QiK

T
j .

13: Compute P
(j)
i = exp(S

(j)
i − Li), where the subtraction uses the bucket’s logsumexp value.

14: Update dVj ← dVj + (P
(j)
i )TdOi.

15: Compute an intermediate gradient dP(j)
i = dOi V

T
j .

16: Compute dS
(j)
i = P

(j)
i ◦ (dP

(j)
i −Di).

17: Update dQi ← dQi + dS
(j)
i Kj .

18: Update dKj ← dKj + (dS
(j)
i )T Qi.

19: Write the updated dQi back to HBM.
20: end for
21: Write the accumulated dKj ,dVj back to HBM.
22: end for
Ensure: dQ,dK,dV.

points until subbuck id reaches the total sub-bucket num-
ber. At this point, sub-buckets allocated in the first step
should contain exactly ρ points. And each newly allocated
sub-bucket should contain 1 point.

Find new sub-bucket In this step, we treat the remain-
ing points in this ThreadBlock. For each point, we scan
all newly allocated sub-buckets and find one that has points
closest to its coordinate. Then we try to commit this point
into the newly found sub-bucket by AtomicInc. How-
ever, a sub-bucket might have reached its capacity before
this point joins. It manifests in the result returned by
AtomicInc being greater than or equal to ρ. Then we
synchronize all threads to identify filled sub-buckets and
under-filled sub-buckets. Finally, we repeat this step until
all points find a sub-bucket.

Note that we repeat for multiple times of linear scans
of newly allocated sub-bucket, which might seem to be a
significant cost. However, all of our in-bucket pooling al-
gorithms are confined within SMs running on fast local L1
cache blocks. Operations on local L1 cache blocks are sig-

nificantly faster than those interacting with globally visi-
ble memory. Hence, our sub-bucket construction has higher
throughput than our main PSH algorithm.

Based on our sub-bucket construction, we reduce point
features within each sub-bucket to complete our in-bucket
pooling operations as describe in main sections.

11. Community Adoption Guidelines
We recognize that integrating innovative methods like
Flash3D into established communities, products, and
pipelines involves both risk and cost. To assist in this tran-
sition, we offer our experiences and recommendations as
gentle, practical guidelines.

11.1. Sub-Manifold Convolution Distillation

For users interested in distilling features from existing
sub-manifold convolution pipelines [4] into Flash3D Point
Transformers, we recommend incorporating fine-grained
supervision from intermediate layers, not merely relying on
final task objectives. Although a significant architectural
gap exists between sub-manifold convolutions and Flash3D,



an important observation is that Flash3D consistently as-
sociates each token feature with a corresponding 3D point
at every layer. In contrast, sub-manifold convolutions typ-
ically assign a feature vector to each voxel. This natural
one-to-one correspondence between point tokens and voxel
boxes provides a straightforward path for feature distillation
from networks like MinkUNet [4] into Flash3D.

11.2. Early Sensor Fusion

There is growing interest in early sensor fusion across
modalities—combining LiDAR point clouds, color images,
videos, Radar traces, and pseudo-point-clouds. Our PSH al-
gorithms are designed to adapt to the content and spatial dis-
tribution of points, ensuring that each bucket is filled with
spatially proximate tokens. This property enables Flash3D
attention scopes to seamlessly incorporate multi-modal to-
kens, even when their coordinates are imprecise, provided
that they exhibit some degree of spatial proximity.

Flash3D can be configured in both pyramidal and U-
Net architectures, making it versatile for multi-modal fusion
across different tasks. Our empirical studies focus on the
U-Net form for semantic segmentation and detection, while
the pyramidal form is well-suited for classification and sum-
marization tasks. As detailed in Section 4.1, each stage
of Flash3D encapsulates a specific granularity and locality
structure; hence, we recommend introducing heterogeneous
tokens at the beginning of each stage, allowing PSH to au-
tomatically determine token affinity.

For outdoor scenes, we suggest integrating heteroge-
neous tokens at the third stage, where the point stride is typ-
ically 8 or 12 (depending on the second-stage reduction ra-
tio). At this stage, each token represents 8 or 12 raw points,
aligning with the token granularity found in other modal-
ities, such as image and video patches [8]. This strategy
not only streamlines sensor fusion but also ensures robust,
universal feature representations across modalities.

11.3. Orin/Thor-U Deployment

We appreciate potential concerns in deploying Flash3D
onto edge platforms and embedded solutions since our pa-
per heavily focuses on server GPU investigations. However,
we point out the only chip requirement for Flash3D is that
the block-wise L1 cache size shall be greater than 100KB.
Orin GPUs have 192KB block-wise L1 cache [16] and suf-
fice to run Flash3D as is. Thor-U and Thor-X GPUs have
larger block-wise L1 cache than Orin does and suffice to run
Flash3D as well.


