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9. Training Details

We selected two language backbones: Phi-3.5-mini-Instruct
! and LLama-3.1-8B-Instruct 2. For the main results, us-
ing the 16.9M image caption dataset and 10M instruction
datasets, we trained all models on 8 nodes with 64 Nvidia
H100 GPUs. The training process consists of two stages:
pretraining and instruction tuning. During the pretraining
stage, unlike LLaVA 1.5 which only tunes the projection
layer, we fine-tune the entire model, including the vision
backbone Florence-2, projection layer, and language model.
We found that tuning the entire model yields better perfor-
mance than freezing the vision and language models. In
the fine-tuning stage, we tune only the projection layer and
language models. For LLama-3.1-8B-Instrcut, the global
batch size for pretraning stage is 256, with a cosine decay
learning rate with maximun value 2e-5. In the fine-tuning
stage, we maintain a global batch size of 256 and a learn-
ing rate of le-5. For Phi-3.5-mini-Instruct, the global batch
size for pretraning stage is 4096, with a cosine decay learn-
ing rate with maximun value le-4. In the fine-tuning stage,
the global batch size is 2048 and learning rate is 9e-5.

10. Discussion

OCR feature is essential for text based image under-
standing. In Table 6a, we examine the role of OCR in
understanding images containing text. To evaluate the ef-
fect of the OCR feature, we retain only the caption and
grounding features. The results in Table 6a indicate that,
apart from TextVQA benchmark, the OCR feature is bene-
ficial for extracting textual information from images in the
other benchmarks.

Knowledge based benchmark reply more on the capabil-
ity of language model. In Table 6b we removing the cap-
tion and grounding features does not result in a significant
difference, suggesting that the knowledge-based benchmark
scarcely relies on various visual information. Addition-
ally, Table 2 shows that the performance of the knowledge-
based benchmark improves with the use of stronger lan-
guage models.
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Table 6. Ablation studies on different features for various benchmarks.
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