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This supplementary material provides additional details
and results that could not be included in the main paper due
to space constraints. The content is organized as follows:
• Section A analyzes weight similarity across methods, and

offers mathematical analysis for FDConv.
• Section B provides a frequency-domain analysis of the

learned parallel weights from prior works and our pro-
posed FDConv.

• Section C includes additional t-SNE visualization results.
• Section D presents more qualitative feature visualiza-

tions.
• Section E reports detailed ablation studies for FDConv.
• Section F outlines further training details for various chal-

lenging datasets.
• Section G explains how Frequency Disjoint Weights re-

duce parameter usage by leveraging the Hermitian sym-
metry property.

• Section H describes an equivalent implementation of fre-
quency band modulation.

A. Weight Similarity Analysis

In this section, we analyze the diversity of learned weights
across different methods to demonstrate the superiority of
our FDConv. The results, visualized in Figures 1, 2, and 3,
highlight the differences in weight similarity between FD-
Conv and existing approaches [6, 7, 16, 18].
Comparison with ODConv. Figure 1 (top row) presents
the cosine similarity between the four learned weights from
prior dynamic convolution methods [6, 7, 16, 18]. We
present representative results from stages 1-4 of the mod-
els [5]. For a fair comparison, the number of weights in
FDConv was set to 4, consistent with the configurations of
the compared methods.

These methods exhibit very high similarity among their
weights (e.g., >0.94 at stage 2 for ODConv), indicating a
lack of diversity. This limited diversity constrains the adapt-
ability of the models and their ability to effectively capture
a broad spectrum of features.

The bottom row of Figure 1 demonstrates the weight
similarity for FDConv. In stark contrast to previous meth-
ods, each weight in FDConv shows a cosine similarity of
1.0 only with itself and 0 with others. This result confirms
the high diversity of the learned weights, enabling FDConv
to better adapt to varying input patterns and capture features
across different frequency bands.

Comparison with Latest KW. We analyze the weight sim-
ilarity in KW [6], as illustrated in Figure 2. KW employs
a weight-sharing strategy across layers, where an attention
mechanism linearly combines weights from a shared weight
warehouse to generate the final weights. Consequently, the
attention module plays a crucial role in determining weight
diversity. Our analysis indicates that the learned attention
weights in KW exhibit high similarity across layers, result-
ing in similar attention values for weight mixing. This,
in turn, leads to a high similarity in the final combined
weights. In contrast, as shown in the bottom part of Fig-
ure 1, our FDConv demonstrates zero similarity between
weights, highlighting its superior diversity.

Impact of Varying Weight Numbers in FDConv. To fur-
ther evaluate the robustness of our method, we analyze FD-
Conv’s weight similarity when the number of weights is set
to 4, 16, and 64, as shown in Figure 3. Across all settings,
each weight maintains a cosine similarity of 1.0 only with
itself and 0 with others, demonstrating FDConv’s consistent
ability to learn highly diverse weights regardless of the con-
figuration. This flexibility is critical for scaling the model
to more complex tasks without compromising diversity.

The results presented in this section demonstrate the
clear advantages of FDConv over existing methods. By
learning highly diverse weights, FDConv achieves greater
adaptability, which is essential for capturing complex in-
put variations and delivering superior performance across a
range of tasks.

Mathematical Analysis of Weight Similarity. Actually,
Fourier Disjoint Weight (FDW) leverages the orthogonal-
ity of disjoint Fourier indices to ensure that the constructed
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Figure 1. Weight similarity analysis. We present representative results from stages 1-4 of the models [5]. The top row in the figure
illustrates the cosine similarity between the four learned weights from previous methods [6, 7, 16, 18]. They exhibit very high similarity
with each other (e.g., >0.94 at stage 2), indicating limited diversity. The bottom row displays the cosine similarity between the four learned
weights from our FDConv. In contrast to existing methods, each weight shows a cosine similarity of 1.0 only with itself and 0 with the
others, demonstrating high diversity. To ensure a fair comparison, we set the number of weights to 4, consistent with the configurations of
the compared methods.
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Figure 2. Weight similarity analysis for recent KW [6]. We present representative results from stages 1-4 of the models [5]. KW adopts
a weight-sharing strategy across different layers, where each layer uses an attention mechanism to linearly mix the same shared weight
warehouse as the final weight. Therefore, we analyze the similarity of the learned attention weights to evaluate final combined weight. We
observe that, for each layer, the learned attention weights exhibit high similarity to each other. This leads to predicting similar attention
values for weight mixing, ultimately resulting in high similarity in the final combined weights.

weights are highly diverse. The key principle is that Fourier
indices assigned to different parameter groups are mutually
disjoint, meaning they share no overlapping frequency com-
ponents. This disjoint property inherently leads to orthogo-
nal frequency responses for the corresponding weights.

Let Pi and Pj denote two disjoint groups of Fourier pa-
rameters, where i ̸= j. After applying the inverse Discrete
Fourier Transform (iDFT), the spatial representations of
these groups are denoted as Si and Sj , respectively. Since
Pi and Pj correspond to non-overlapping Fourier indices,

the iDFT of each group results in orthogonal spatial com-
ponents. This can be formally expressed as:

⟨Si,Sj⟩ = 0, for i ̸= j, (1)

where ⟨·, ·⟩ denotes the inner product. This orthogonality
ensures that the cosine similarity between any two spatial
weights Wi and Wj , reshaped from Si and Sj , is zero:

CosSim(Wi,Wj) =
⟨Wi,Wj⟩
∥Wi∥∥Wj∥

= 0, for i ̸= j. (2)
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Figure 3. Weight similarity analysis with varying numbers of weights for our FDConv. We present the cosine similarity between the
learned weights from our FDConv when the number of weights is set to 4, 16, and 64. Each weight exhibits a cosine similarity of 1.0 only
with itself and 0 with the others, demonstrating high diversity across all settings.

Figures 1 and 3 empirically validates this property by
comparing the cosine similarity of weights generated by
FDW and existing dynamic convolution methods [6, 7, 16,
18]. While previous methods exhibit high similarity be-
tween weights, FDW achieves zero similarity across all
pairs of weights. This property is crucial for ensuring di-
verse frequency responses, as each weight captures unique
information without redundancy.

In summary, the orthogonality of Fourier Disjoint
Weight stems from its frequency-domain design, where
each group of Fourier indices contributes independently
to the overall representation. This mathematical property
highlights the superiority of FDW in generating highly di-
verse weights, thereby enabling dynamic convolution layers
to capture richer and more adaptive feature representations.

B. Weight Frequency Response Analysis

To validate the effectiveness of the proposed FDConv, we
conduct a comprehensive analysis of the frequency re-
sponses of learned weights in comparison to prior dynamic
convolution methods [6, 7, 16, 18]. Figure 4 presents the
results of this analysis.

The top row of Figure 4 shows the frequency responses
of weights learned by previous methods, such as OD-
Conv [7]. We present representative results from stages
1-4 of the models [5]. These methods operate in the spa-
tial domain and exhibit highly similar frequency responses
across their parallel weights. For instance, the four parallel
weights of ODConv demonstrate a lack of diversity, with
responses clustered closely in the frequency domain. This
indicates limited adaptability in capturing features across
different frequency bands.

In contrast, the bottom row of Figure 4 highlights the
frequency responses of weights learned by our FDConv,

which operates directly in the frequency domain. To en-
sure a fair comparison, we configure FDConv to use four
weights, matching the setup of ODConv. Notably, FDConv
produces distinct frequency responses for each weight, ef-
fectively spanning various regions of the frequency spec-
trum. This diversity enables FDConv to better capture fea-
tures at both high and low frequencies, leading to superior
adaptability and enhanced feature extraction capabilities.

The results clearly demonstrate that FDConv addresses
the limitations of prior methods by introducing diverse and
complementary frequency responses. This ability to effec-
tively decompose and process information across a wide
frequency range is pivotal for tasks requiring detailed fea-
ture representations, such as segmentation, detection, and
classification.

C. Weight t-SNE Analysis

To further evaluate the diversity of learned weights, we con-
duct a t-SNE [15] analysis on the weights obtained from
stages 1-4 of the models [5]. The results are presented in
Figure 5, where the top and bottom rows correspond to pre-
vious methods [6, 7, 16, 18] and our proposed FDConv, re-
spectively. To ensure a fair comparison, we set the number
of weights to 4 for FDConv.

In the top row, the t-SNE visualizations show that the
filters from the four weights of previous method [7] ex-
hibit a high degree of overlap, indicating limited diversity.
Conversely, the bottom row demonstrates that the weights
learned by our FDConv exhibit significantly more diverse
distributions across the t-SNE projections. This enhanced
diversity is evident in all four stages and suggests that FD-
Conv learns more discriminative representations.
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Figure 4. Weight frequency response analysis. We present representative results from stages 1-4 of the models [5]. The top row illustrates
the frequency responses of learned weights from previous methods [6, 7, 16, 18]. These methods learn weights in the spatial domain, and
the frequency responses of the four parallel weights in ODConv are highly similar, indicating limited diversity. The bottom row displays
the frequency responses of learned weights from our FDConv, which learns parallel weights in the frequency domain. To ensure a fair
comparison, we set the number of weights to 4, consistent with them. In contrast, FDConv exhibits distinct frequency responses for each
weight, covering different regions of the frequency spectrum.
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Figure 5. Weight t-SNE [15] analysis. We present representative results from stages 1-4 of the models [5]. The top row illustrates the
t-SNE results of learned weights from previous methods [6, 7, 16, 18]. We can see that the filters in the four weights distribute closely to
each other. The bottom row displays the t-SNE results of learned weights from our FDConv. The filters in the four weights of FDConv
exhibit different distributions, indicating greater diversity. To ensure a fair comparison, we set the number of weights to 4, consistent with
them.

D. Feature Visualization

To demonstrate the behavior of Frequency Band Modula-
tion (FBM), we visualize the modulation maps for different
frequency bands, as shown in Figure 6. For better perfor-
mance, the modulation map for the lowest frequency band

is empirically set to 1 across all spatial locations. This en-
sures consistent emphasis on low-frequency components.

We observe that higher frequency bands exhibit high
modulation value around object boundaries, as seen in Fig-
ure 6(b)-(d). Conversely, lower frequency bands display
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Figure 6. Visualization of Frequency Band Modulation. (a) shows the input images and their corresponding ground truth (GT). (b)–(d)
display the modulation maps for different frequency bands, ranging from low to high. (e) and (f) visualize the feature frequency spectrum.
Normalized frequency [0, 0.5] is used for simplicity, ×2π yields normalized angular frequency.



Table 1. Ablation studies for FDConv on the COCO validation
set [9], showcasing the integration of Fourier Disjoint Weight
(FDW), Kernel Spatial Modulation (KSM), and Frequency Band
Modulation (FBM).

Models Params APbox

Mask R-CNN 46.5(23.5)M 39.6

+ FDW + 1.3M 40.6 (+1.0)
+ FDW + KSM (local only) +1.6M 41.2 (+1.6)
+ FDW + KSM + 3.5M 41.8 (+2.2)
+ FDW + KSM + FBM + 3.6M 42.4 (+2.8)

Table 2. Ablation study on the number of weights (n) in FDConv.
The results are reported on the COCO validation set [9].

Number of Weights (n) n = 4 n = 16 n = 64 n = 256

APbox 42.0 42.2 42.4 42.4

Table 3. Ablation study of Frequency Band Modulation (FBM) on
the COCO dataset [9]. The phrase “Set lowest band to 1.0” refers
to assigning a fixed modulation weight of 1.0 to the lowest fre-
quency band. Normalized frequency [0, 0.5] is used for simplicity,
×2π yields normalized angular frequency.
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Table 4. Inference speed evaluation. The frame-per-second (FPS)
results were tested using a feature map size of 128×64×64 on an
i9-10850K CPU @ 3.60GHz. n indicates the number of parallel
weights.

Model Standard Conv ODConv [7] FDConv (Ours)

FPS (n = 1) 736.1 - -
FPS (n = 4) 498.7 454.8
FPS (n = 16) - 325.3 450.2
FPS (n = 64) - 135.7 447.1

higher modulation values within object interiors, highlight-
ing the selective focus of FBM. This selective modulation
pattern enables FDConv to suppress high-frequency noise
in areas such as the background and object centers, which
contribute less to accurate predictions.

As depicted in Figure 6(e)-(f), the application of FBM
leads to a significant reduction in high-frequency noise in
the feature maps. Furthermore, the spectral analysis in
Figure 6(g)-(h) confirms the suppression of unnecessary
high-frequency components, while simultaneously enhanc-
ing critical foreground features. This results in more precise
and complete representations of objects, which is particu-

larly advantageous for dense prediction tasks such as seg-
mentation and detection.

E. Ablation Study

To evaluate the effectiveness and efficiency of FDConv, we
conducted ablation studies on the COCO validation set [9].
These experiments examine the contributions of Fourier
Disjoint Weight (FDW), Kernel Spatial Modulation (KSM),
and Frequency Band Modulation (FBM), as well as the pa-
rameter trade-offs and inference speed.
Effectiveness of FDW, KSM, and FBM. Table 1 demon-
strates the progressive integration of FDConv components
into the Mask R-CNN baseline. Adding FDW improves
APbox by +1.0, showcasing its ability to enhance frequency
diversity with only a minor parameter increase (+1.3M),
compared to prior works [6, 7, 16, 18], which often lead
to significant parameter growth (e.g., 4×). Incorporating
KSM (local channel branch only) provides an additional
gain of +0.6, while full KSM (both global and local chan-
nel branches) achieves a more substantial improvement of
+1.2. Finally, FBM increases APbox to 42.4 (+2.8 overall),
emphasizing its pivotal role in optimizing frequency band-
specific modulation across different spatial locations.
Weight Numbers in FDConv. Table 2 examines the impact
of the number of parallel weights (n) in FDConv. Increas-
ing n from 4 to 64 improves APbox from 42.0 to 42.4, but
further increases show diminishing returns. Notably, FD-
Conv constructs weights by partitioning a fixed set of pa-
rameters in the Fourier domain into n disjoint groups, gen-
erating n parallel weights without increasing the parame-
ter cost. This design ensures minimal additional overhead,
maintaining efficiency across diverse tasks.
Frequency Band Modulation Design. Table 3 examines
the impact of dividing the frequency spectrum into varying
numbers of bands. By default, we decompose the frequency
spectrum into four distinct bands using an octave-based
partitioning strategy [14]. Normalized frequency [0, 0.5]
is used for simplicity, ×2π yields normalized angular fre-
quency.

As shown in Table 3, increasing the granularity of
frequency band divisions improves performance up to a
certain point. Dividing the frequency spectrum into 4
bands ([0, 1

16 ), [
1
16 ,

1
8 ), [

1
8 ,

1
4 ), [

1
4 ,

1
2 ]) achieves the best per-

formance, with an APbox of 42.4. However, further increas-
ing the granularity to 5 bands slightly reduces performance,
likely due to over-division of the frequency spectrum, which
may dilute the modulation effect.

We also evaluate the impact of setting a fixed modula-
tion weight of 1.0 for the lowest frequency band. When
this condition is removed, the performance drops from 42.4
to 42.1. This demonstrates the importance of maintaining
strong low-frequency responses for capturing global struc-



ture and stability during feature learning.
Inference Speed Analysis Table 4 compares inference
speeds between standard convolution, ODConv [7], and
FDConv. The FBM is bypassed. Tested on an i9-
10850K CPU, FDConv achieves competitive frame-per-
second (FPS) rates, maintaining over 447 FPS even with
n = 64. This demonstrates FDConv’s efficiency compared
to ODConv, which suffers from a significant speed drop as
n increases.

F. Experimental Settings

Datasets and Metrics. We evaluate our methods on three
challenging benchmarks: Cityscapes [2], ADE20K [19],
and COCO [10].

Cityscapes [2] is a widely used semantic segmentation
dataset featuring 19 classes. It contains 5,000 finely anno-
tated images at a resolution of 2048× 1024 pixels, divided
into training (2,975), validation (500), and test (1,525) sets.
We use only the training set for learning. ADE20K [19] is
a more diverse dataset, covering 150 semantic categories,
with 20,210 training images, 2,000 validation images, and
3,352 test images.

To assess object detection and instance segmentation, we
leverage the COCO dataset [10], a standard benchmark in
these domains. For evaluation metrics, we adopt mean In-
tersection over Union (mIoU) for semantic segmentation
tasks and Average Precision (AP) for object detection and
instance segmentation.
Implementation Details. For Mask2Former [1], we adhere
to the original training protocols [1]. Data augmentation
includes random cropping, horizontal flipping, and scaling
in the range [0.5, 2.0]. The training uses a poly learning rate
decay strategy. Key hyperparameters include 90k iterations,
an initial learning rate of 1e−4, a weight decay of 5e−2,
cropped input size of 512 × 1024, and a batch size of 16,
optimized with AdamW.

For UPerNet with ResNet backbones [5], all models are
trained for 160k iterations using AdamW [11], with a batch
size of 16. Mask2Former [1] and MaskDINO [8] follow
their respective training setups outlined in their original pa-
pers.

On COCO, we follow common practices [4, 12, 17] for
training object detection and instance segmentation models.
All models are trained for 12 epochs using the 1× schedule,
ensuring compatibility with standard benchmarks.

For ImageNet, we follow standard training settings to en-
sure fair comparisons across methods. Specifically, ResNet-
18 models are trained with SGD for 100 epochs, using a
batch size of 256, momentum of 0.9, and weight decay of
0.0001. The initial learning rate is set to 0.1 and decayed
by a factor of 10 every 30 epochs. These settings align with
prior work [7, 16].

G. Parameters of Frequency Disjoint Weight
In Section 3.1 of the main paper, we set the parameter bud-
get to k × k × Cin × Cout. FDW first treats these parame-
ters as learnable spectral coefficients in the Fourier domain,
reshaping them into P ∈ RkCin×kCout . Since the Fourier do-
main coefficients are complex-valued, each coefficient re-
quires two parameters: one for the real part and one for
the imaginary part. Thus, a naive approach would require
2× k × k × Cin × Cout parameters.

In FDConv, we exploit the inherent symmetry of the
Fourier Transform for real-valued inputs to reduce the pa-
rameter cost. Since the input images, feature maps, and
weights are real-valued, their Fourier domain representa-
tions exhibit Hermitian symmetry [3, 13]. Specifically, the
Fourier Transform of a real-valued function f(x, y) satisfies
the following property:

F (u, v) = F (−u,−v), (3)

where F (u, v) is the Fourier coefficient at frequency (u, v),
and F (−u,−v) is the complex conjugate of F (−u,−v).
Proof of Hermitian Symmetry. The Discrete Fourier
Transform (DFT) of a real-valued function f(x, y) is given
by:

F (u, v) =

N−1∑
x=0

M−1∑
y=0

f(x, y)e−j2π(ux
N + vy

M ). (4)

If f(x, y) is real, then:

F (u, v) =

N−1∑
x=0

M−1∑
y=0

f(x, y)e−j2π(ux
N + vy

M ) (5)

=

N−1∑
x=0

M−1∑
y=0

f(x, y)ej2π(
ux
N + vy

M ) (6)

=
N−1∑
x=0

M−1∑
y=0

f(x, y)e−j2π(ux
N +−vy

M ) (7)

= F (−u,−v). (8)

Thus, F (u, v) = F (−u,−v), proving that the Fourier coef-
ficients of real-valued inputs exhibit Hermitian symmetry.
Implications for Parameter Efficiency. Due to Hermitian
symmetry, only half of the Fourier coefficients are unique,
as the coefficients at negative frequencies are determined
by their positive counterparts. This property eliminates the
need to learn or store redundant frequency components.

As a result, the parameters required to construct convo-
lution weights in the Fourier domain are effectively halved
compared to a naive approach. Instead of requiring a pa-
rameter budget of 2× k× k×Cin ×Cout, FDConv requires
only k×k×Cin×Cout, ensuring parameter efficiency while
retaining full expressive power.



H. Equivalent Implementation of FBM
In the main paper, we introduce Frequency Dynamic Mod-
ulation (FBM), which operates in the following key steps:
1) Kernel frequency decomposition, decomposing the fre-
quency response of the convolution weight into distinct fre-
quency bands. 2) Convolution in the Fourier domain, per-
forming convolution operations in the Fourier domain. 3)
Spatially variant modulation, predicting spatially adaptive
modulation values for each frequency band of the convolu-
tion weight. Here, we introduce an equivalent implementa-
tion of FBM. The core formulation of FBM is expressed as:

Y =

B−1∑
b=0

(Ab ⊙ (Wb ∗X)), (9)

where X and Y ∈ Rh×w represent the input and output
feature maps (the channel dimension is omitted for simplic-
ity). Ab ∈ Rh×w denotes spatially varying modulation val-
ues specific to the b-th frequency band, and Wb represents
the convolution weight associated with the b-th frequency
band. FBM enables adaptive adjustment of frequency re-
sponses for each spatial location in the feature map.

The frequency band-specific weight Wb is computed as:

Wb = F−1(Mb ⊙F(W)), (10)

where F and F−1 are the Discrete Fourier Transform
(DFT) and its inverse, respectively, and Mb is a binary
mask isolating specific frequency ranges. According to the
Convolution Theorem [3], convolution in the spatial domain
is equivalent to pointwise multiplication in the frequency
domain. This property allows us to rewrite W ∗X as:

W ∗X = F−1(F(W)⊙F(X)). (11)

Substituting this equivalence into the FBM formulation
yields:

Y =

B−1∑
b=0

(
Ab ⊙F−1 ((Mb ⊙F(W))⊙F(X))

)
=

B−1∑
b=0

(
Ab ⊙F−1 ((Mb ⊙F(X))⊙F(W))

)
=

B−1∑
b=0

(
Ab ⊙F−1 (Mb ⊙F(X)) ∗W

)
=

B−1∑
b=0

(Ab ⊙Xb ∗W)

=

B−1∑
b=0

(Ab ⊙Xb) ∗W,

(12)

where Xb = F−1(Mb ⊙ F(X)) represents the input
feature map filtered to the b-th frequency band.

Thus, FBM can be implemented by decomposing the in-
put feature map into different frequency bands, applying
spatially variant modulation, and performing convolution
with the weight.

References
[1] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-

der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern
Recognition, pages 1290–1299, 2022. 7

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern
Recognition, pages 3213–3223, 2016. 7

[3] Rafael C Gonzalez. Digital image processing. Pearson edu-
cation india, 2009. 7, 8

[4] Ali Hassani and Humphrey Shi. Dilated neighborhood atten-
tion transformer. 2022. 7

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1, 2, 3, 4, 7

[6] Chao Li and Anbang Yao. Kernelwarehouse: Rethinking the
design of dynamic convolution. In Proceedings of Interna-
tional Conference on Machine Learning, 2024. 1, 2, 3, 4,
6

[7] Chao Li, Aojun Zhou, and Anbang Yao. Omni-dimensional
dynamic convolution. In Proceedings of International Con-
ference on Learning Representations, 2022. 1, 2, 3, 4, 6,
7

[8] Feng Li, Hao Zhang, Huaizhe Xu, Shilong Liu, Lei Zhang,
Lionel M Ni, and Heung-Yeung Shum. Mask dino: To-
wards a unified transformer-based framework for object de-
tection and segmentation. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
3041–3050, 2023. 7

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Proceedings of European Conference on Computer Vision,
pages 740–755, 2014. 6

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 7

[11] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 7

[12] Yongming Rao, Wenliang Zhao, Yansong Tang, Jie Zhou,
Ser Nam Lim, and Jiwen Lu. Hornet: Efficient high-order
spatial interactions with recursive gated convolutions. Pro-
ceedings of Advances in Neural Information Processing Sys-
tems, 35:10353–10366, 2022. 7

[13] Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and
Jie Zhou. Global filter networks for image classification. In



Proceedings of Advances in Neural Information Processing
Systems, volume 34, pages 980–993, 2021. 7

[14] Ajay Subramanian, Elena Sizikova, Najib J Majaj, and De-
nis G Pelli. Spatial-frequency channels, shape bias, and ad-
versarial robustness. pages 1–10, 2024. 6

[15] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(11), 2008. 3, 4

[16] Thomas Verelst and Tinne Tuytelaars. Dynamic convolu-
tions: Exploiting spatial sparsity for faster inference. In Pro-
ceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2320–2329, 2020. 1, 2, 3, 4, 6, 7

[17] Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang,
Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei Lu,
Hongsheng Li, et al. Internimage: Exploring large-scale vi-
sion foundation models with deformable convolutions. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 14408–14419, 2023. 7

[18] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan
Ngiam. Condconv: Conditionally parameterized convolu-
tions for efficient inference. Proceedings of Advances in
Neural Information Processing Systems, 32, 2019. 1, 2, 3,
4, 6

[19] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 633–641, 2017.
7


	. Weight Similarity Analysis
	. Weight Frequency Response Analysis
	. Weight t-SNE Analysis
	. Feature Visualization
	. Ablation Study
	. Experimental Settings
	. Parameters of Frequency Disjoint Weight
	. Equivalent Implementation of FBM

