G3Flow: Generative 3D Semantic Flow for Pose-aware and
Generalizable Object Manipulation

Supplementary Material

A. Simulation Tasks

We provide detailed descriptions of all simulation tasks, as shown in Table 6, totaling 5 tasks.

Task Description

Bottle Adjust A bottle is placed horizontally on the table. The bottle’s design is random and
does not repeat in the training and testing sets. When the bottle’s head is facing
left, pick up the bottle with the right robot arm so that the bottle’s head is facing
up; otherwise, do the opposite.

Tool Adjust A tool is placed horizontally on the table. The tool’s design is random and does
not repeat in the training and testing sets. When the tool’s head is facing left,
pick up the tool with the right robot arm so that the tool’s head is facing up;
otherwise, do the opposite.

Diverse Bottles Pick A random bottle is placed on the left and right sides of the table. The bottles’
designs are random and do not repeat in the training and testing sets. Both left
and right arms are used to lift the two bottles to a designated location.

Shoe Place Shoes are placed randomly on the table, with random designs that do not repeat
in the training and testing sets. The robotic arm moves the shoes to a blue area
in the center of the table, with the shoe head facing the left side of the table.

Dual Shoes Place One shoe is placed randomly on the left and right sides of the table. The shoes
are the same pair with random designs that do not repeat in the training and
testing sets. Both left and right arms are used to pick up the shoes and place
them in the blue area, with the shoe heads facing the left side of the table.

Table 6. Benchmark Task Descriptions.

B. Implementation Details

This section will provide a detailed introduction to the implementation details of G3Flow as described in the paper, including
the setup of the experiments.

B.1. Structure Details

Vision Foundation Model. We utilize the ViT-S/14 variant and transform all images to a resolution of 420 by 420 pix-
els. These are then fed into the model to obtain feature maps of size 30 by 30, where each pixel has a 384-dimensional
feature representation. Subsequently, these features are transformed back to the original image dimensions. The PyTorch
implementation is as follow:

def get_dino_feature(image, transform_size=420, model=None) :
img, H, W = transform_np_image_to_torch(image, transform_size=transform_size)
res = model (img) # torch.Size([1, 384, 30, 30])
feature = np.array(res.cpu() .unsqueeze (0))
new_order = (0, 1, 3, 4, 2) # torch.Size([1, 30, 30, 384])
feature = np.transpose (feature, new_order)
orig_shape_feature = transform_shape (torch.Tensor (np.transpose (feature([0], (0, 3, 1, 2)))
— , H, W)
orig_shape_feature_line = orig_shape_feature.reshape (-1, orig_shape_feature.shape[-1])
return orig_shape_feature, orig_shape_feature_line

PCA. We employ Principal Component Analysis (PCA) to reduce the feature dimensionality from 384 to 5.



Perception. For image observations, we uniformly employ a camera setup with a resolution of 320 by 240 pixels and a field
of view (fovy) of 45 degrees. We apply Farthest Point Sampling (FPS) to both the feature point cloud and the real observation
point cloud, downsampling them to 1024 points. We provide a simple PyTorch implementation of our Feature Pointcloud
Encoder as follows:

class PointNetFeaturePCDEncoder (nn.Module) :
def _ init_ (self,
in_channels,
out_channels,
use_layernorm,
final_norm,
use_projection,
**kwargs
) :
super () .__init
block_channel

(
[512, 512, 256]

self.mlp = nn.Sequential (
nn.Linear (in_channels, block_channel[0]),

nn.LayerNorm(block_channel[0]) if use_layernorm else nn.Identity(),
nn.RelLU(),

nn.Linear (block_channel[0], block_channel([1l]),
nn.LayerNorm(block_channel[1l]) if use_layernorm else nn.Identity(),

nn.RelLU(),
nn.Linear (block_channel[l], block_channel([2]),
nn.LayerNorm(block_channel[2]) if use_layernorm else nn.Identity(),

self.final_projection = nn.Sequential (
nn.Linear (block_channel[-1], out_channels),
nn.LayerNorm (out_channels)

self.use_projection = use_projection

def forward(self, x):
x = self.mlp(x)
x = torch.max(x, 1) [0]
x = self.final_projection (x)
return x



B.2. Parameter Details

Training Setup. The training setup for the Diffusion Policy based on G3Flow is shown in Tab. 7.

Parameter Value
horizon 8
n_obs_steps 3
n_action_steps 6
num-inference_steps 10
dataloader.batch_size 256
dataloader.num_workers 8
dataloader.shuffle True
dataloader.pin_memory True
dataloader.persistent_workers False
optimizer._target_ torch.optim.AdamW
optimizer.Ir 1.0e-4
optimizer.betas [0.95, 0.999]
optimizer.eps 1.0e-8
optimizer.weight_decay 1.0e-6
training.lr_scheduler cosine
training.lr_warmup_steps 500
training.num_epochs 3000
training.gradient_accumulate_every 1

Table 7. Model Training Settings. Hyper-parameter Settings for Training and Deployment of G3Flow-empowered DP.
Baselines Setup. We outline the key training settings for the baseline in Tab. 8.

Parameter DP DP3
horizon 8 8
n_obs_steps 3 3
n_action_steps 6 6
num_inference_steps 100 10
dataloader.batch_size 128 256
dataloader.num_workers 0 8
dataloader.shuffle True True
dataloader.pin_memory True True
dataloader.persistent_workers False False
optimizer._target_ torch.optim.AdamW  torch.optim. AdamW
optimizer.lr 1.0e-4 1.0e-4
optimizer.betas [0.95, 0.999] [0.95, 0.999]
optimizer.eps 1.0e-8 1.0e-8
optimizer.weight_decay 1.0e-6 1.0e-6
training.Ir_scheduler cosine cosine
training.lr_warmup_steps 500 500
training.num-_epochs 300 3000
training.gradient_accumulate_every 1 1
training.use_ema True True

Table 8. Baselines Settings. Hyper-parameter Settings for Training and Deployment of DP and DP3 Algorithms.



