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A. Training Details001

The training process consists of two main stages: geometric002
prompt learning and adapter fine-tuning.003

A.1 Geometry Prompt Learning004

For geometry prompt learning (Stage I), we first construct005
multi-geometric graph structures using k-nearest neighbors006
(k=10) in three complementary spaces: Euclidean, Hyper-007
bolic (k=-1), and Spherical (k=1). The input features of008
dimension 1024 are processed through geometric encoders009
with a hidden dimension of 512, eventually producing 256-010
dimensional geometric embeddings for each space. During011
training, we employ the AdamW optimizer with an initial012
learning rate of 1e-3 and weight decay of 1e-5. A step-wise013
learning rate scheduler is applied with step size 100 and de-014
cay factor 0.5. To ensure efficient training, we use a batch015
size of 1024 and train for 100 epochs.016

A.2 Adapter Fine-tuning017

For adapter fine-tuning (Stage II), we build upon Qwen2-018
VL-2B as our base model. The geometry adapter is in-019
tegrated every four transformer layers, consisting of three020
types of feed-forward networks: a standard Euclidean FFN021
inherited from the pre-trained weights, a Hyperbolic FFN022
based on the Lorentz model with learnable scale, and a023
Spherical FFN utilizing von Mises-Fisher distribution with024
learnable concentration. These experts are orchestrated025
through a gating mechanism with temperature τ = 0.1. We026
utilize LoRA for efficient fine-tuning, with rank 16, alpha027
32, and dropout 0.1. The training process employs mixed-028
precision (bf16) and runs with a batch size of 16 per GPU029
for 3 epochs. We use the AdamW optimizer with a learning030
rate of 2e-5 and weight decay of 0.01, incorporating 500031
warmup steps. The maximum sequence length is set to 512032
tokens.033

A.3 Data Pre-processing034

For data processing, images are resized to 144×144 pix-035
els and normalized to [0,1] range. Spectral data is en-036
coded into 1024-dimensional features and L2 normalized.037
These features are then projected into different geomet-038
ric spaces through manifold-specific mappings, resulting in039
256-dimensional representations in each space.040

B. Riemannina Geometry041

A smooth manifold M is referred to as a Riemannian man-042
ifold when it possesses a Riemannian metric g. Curva-043
ture c is an important measure of the degree of geodesic044
bending. For each point x ∈ M , there exists a tangent045
space TxM ⊆ Rd that surrounds x, where the metric g046
is applied to determine the manifold’s shape. The rela-047
tionship between the tangent space and the manifold is es-048

tablished through the use of exponential and logarithmic 049
maps. In particular, the exponential map at point x, rep- 050
resented as expcx(·) : TxM → M , transforms points from 051
the tangent space into the manifold, while the logarithmic 052
map function is the inverse function of exponential map 053
logcx(·) = (expcx(·))−1. 054

In this paper, we use three geometric spaces of different 055
curvature to form a Riemannian expert: Euclidean space 056
(c = 0), hyperbolic space (c < 0), and spherical space 057
(c > 0). 058

B.1 Euclidean space 059

Euclidean space is based on Euclidean coordinates. Since 060
the curvature is zero, the geodesic remains parallel. Eu- 061
clidean space can be used to describe a flat universe very 062
well. Each galaxy is influenced by its neighbors, capturing 063
the local structure of galaxies in the universe. The exponen- 064
tial mapping of Euclidean Spaces is defined as: 065

expcxp
(x) = xp + x. (1) 066

B.2 Hyperbolic space 067

A hyperbolic space is defined as 068
Hd

c= {xp ∈ Rd+1 : ⟨xp,xp⟩L = 1/c}, where d repre- 069
sents the dimension and the inner product is defined as 070
⟨x,y⟩L = −x1y1 +

∑
j=2 xjyj). In a hyperbolic space, 071

The geodesic distance between the two points is: 072

d(x, y) =
1√
−c

arccosh (c ∗ ⟨x,y⟩L) . (2) 073

Since the curvature is negative, the geodesic will diverge. 074
This helps to describe the evolution of galaxies in a uni- 075
verse, and thus reflects the internal hierarchy of galaxies. 076
Its exponential map is defined as: 077

expcxp
(x) = cosh

(√
−c||x||

)
xp+sinh

(√
−c||x||

) x√
−c||x||

.

(3) 078

B.3 Sphere space 079

Spherical space is defined as Sdc = {xp ∈ Rd+1 : 080
⟨xp,xp⟩S = 1/c}, where the inner product is the stan- 081

dard Euclidean inner product ⟨x,y⟩S =
∑d+1

j=1 xjyj .The 082
geodesic distance between the two points is: 083

d(x, y) =
1√
c
arccos (c⟨x,y⟩S) . (4) 084

Geodesics in spherical space are convergent. Therefore, 085
it can reflect the global information of the galaxy. Capture 086
the overall star map content. Its exponential map is defined 087
as 088

expcxp
(x) = cosh

(√
c||x||

)
xp+sinh

(√
c||x||

) x√
−c||x||

.

(5) 089
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C. Special Tokens and Templates090

C.1 Special Modality Tokens091

To effectively integrate multi-modal features into the input092
sequence, we carefully selected special tokens with rela-093
tively low frequency in the pre-trained vocabulary to repre-094
sent different modalities. Specifically, we use token “Ã” for095
spectral features, “℘“ for Euclidean geometric structure, “ø”096
for spherical geometric structure, and “æ” for hyperbolic097
geometric structure. During forward propagation, these to-098
kens’ embeddings are dynamically replaced with their cor-099
responding modal embeddings after geometry-specific pro-100
jection and normalization. This design allows the model to101
seamlessly incorporate multi-geometric and spectral infor-102
mation while maintaining the pre-trained model’s linguistic103
capabilities.104

C.2 Task-specific Templates105

In this section, we present the task-specific templates for106
two main categories of tasks: galaxy property estimation107
and galaxy morphology classification. For each task, we108
utilize special modality tokens introduced in Section to109
incorporate different modalities. The key modalities in-110
clude Image, Spectral (where available), and Geometry in-111
formation. To better leverage knowledge from pre-trained112
models, we customize the descriptions of special modal-113
ity tokens according to each task’s characteristics, enabling114
Galaxy Walker to align multi-modal representations better.115

C.2.1 Galaxy Property Estimation116

Galaxy property estimation encompasses four regression117
tasks:118
• Stellar Mass (M∗) Prediction: For numerical regression119

of the total mass of stars in a galaxy.120
• Mass-Weighted Stellar Metallicity (ZMW) Prediction:121

For estimating the abundance of heavy elements in stars.122
• Mass-Weighted Galaxy Age (tage) Prediction: For de-123

termining the mass-weighted average age of stars (in124
Gyr).125

• Specific Star-Formation Rate (sSFR) Prediction: For126
calculating the rate of star formation per unit stellar mass.127
For these prediction tasks, we employ a numerical head128

for regression. In the templates, we use the “num“ token129
to represent all numerical values as the model’s target re-130
sponse.131

C.2.2 Galaxy Morphology Classification132

Galaxy morphology classification includes ten distinct clas-133
sification tasks:134

1. Smooth (SMH)135

2. Disk-Edge-On (DEO)136

3. Spiral-Arms (SPR)137

4. Bar (BAR) 138

5. Bulge-Size (BLG) 139

6. How-Rounded (RND) 140

7. Edge-On-Bulge (EOB) 141

8. Spiral-Winding (SWP) 142

9. Spiral-Arm-Count (SAC) 143

10. Merging (MRG) 144

For classification tasks, we structure the templates as 145
multiple-choice questions, with the model required to select 146
from options labeled (a), (b), (c), etc. The specific options 147
for each classification task are presented in Table 1. 148

D.Additional Experiments 149

D.1 The Impact of Prompt 150

To investigate whether our designed prompts can effectively 151
leverage knowledge from pre-trained models to improve 152
performance, we conduct experiments comparing three dif- 153
ferent prompt settings: 154

• Concat: Directly concatenating modality tokens (Image 155
Token, Spectral Token, Geometry Token) with the ques- 156
tion text without any connecting words or explanations. 157

• Simple Prompt: Adding basic connecting words to de- 158
scribe what each modality token represents, building 159
upon the Concat setting. 160

• Prompt with Knowledge Background: Using our care- 161
fully designed templates from Section , which incorporate 162
detailed explanations of how each modality token con- 163
tributes to the specific task, combined with relevant do- 164
main knowledge. 165

As shown in Figure 15, the Prompt with Knowledge 166
Background setting consistently outperforms the other two 167
approaches. In property estimation tasks, this setting 168
achieves notably better results across all metrics, with par- 169
ticular improvements in sSFR prediction. For morphology 170
classification tasks, while all three settings perform com- 171
petitively, the Knowledge Background prompts still demon- 172
strate advantages, especially in complex features such as 173
Bar and Spiral Arm Count classification. These results 174
suggest that carefully designed prompts incorporating do- 175
main knowledge can effectively help the model leverage 176
pre-trained knowledge for better task performance. 177

D.2 Parameter-Efficient Training Strategy Analysis 178

We evaluate three different training strategies to investigate 179
the effectiveness of our parameter-efficient approach: 180

• Geometry Adapter Only: Training only the newly added 181
components including projection πθ, Geometry Adapter, 182
and Num Head weights. 183
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Table 1. Options for Galaxy Morphology Classification Tasks

Task Options

Smooth (a) Smooth (b) Featured or Disk (c) Artifact
Disk-Edge-On (a) Yes (b) No
Spiral-Arms (a) Yes (b) No
Bar (a) Strong Bar (b) Weak Bar (c) No Bar
Bulge-Size (a) Dominant (b) Large (c) Moderate (d) Small (e) None
How-Rounded (a) Round (b) In-Between (c) Cigar-Shaped
Edge-On-Bulge (a) Boxy (b) None (c) Rounded
Spiral-Winding (a) Tight (b) Medium (c) Loose
Spiral-Arm-Count (a) 1 (b) 2 (c) 3 (d) 4 (e) More than 4 (f) Can’t Tell
Merging (a) None (b) Minor Disturbance (c) Major Disturbance (d) Merger

Galaxy Walker: Stellar Mass Estimation

User: Stellar mass refers to the total mass of all the stars in a galaxy. It is a critical parameter for understanding galaxy formation and evolution and can be analyzed

through multiple perspectives. Specifically, the [Image token] utilizes celestial image data to assess morphology and luminosity, which helps in the initial estimation

of stellar mass. The [Spectral token] analyzes stellar spectral characteristics, such as absorption line width and radiation intensity, to directly infer mass parameters.

The [Euclidean token] provides the object’s position in flat space, aiding in the mass calculation by considering distance measurements. The [Hyperbolic token]

describes the geometrical properties in negatively curved space, modeling more complex cosmic structures and helping to understand the distribution of massive stars

in a negatively curved universe. The [Sphere token] uses spherical geometry in positively curved space to evaluate an object’s position in the spherical coordinate

system, leading to a more accurate mass estimation.

Assistant: NUM

Figure 1. Prompt template for stellar mass estimation.

• Geometry Adapter + LoRA: Training the Geometry184
Adapter components plus LoRA modules in attention and185
linear layers.186

• Full-Parameter Training: Fine-tuning all model param-187
eters.188

As shown in Table 3, our Geometry Adapter + LoRA189
strategy achieves comparable or even superior performance190
to full-parameter training across most metrics. Notably,191
it outperforms full-parameter training in property estima-192
tion tasks, achieving better R2 scores for all four prop-193
erties (M∗, ZMW, tage, sSFR). For morphology clas-194
sification, the performance difference is minimal, with195
our parameter-efficient approach showing slight advantages196
in several categories (DEO, SPR, BAR). The Geometry197
Adapter Only setting, while using the fewest trainable pa-198
rameters, still maintains strong performance, suggesting199
that the geometric adaptation components effectively cap-200
ture domain-specific features. These results demonstrate201
that our parameter-efficient strategy can match or exceed202
the performance of full-parameter training while signifi-203
cantly reducing the number of trainable parameters and204
computational cost.205

Hardware Inference Time (s)

NVIDIA H100 0.38
NVIDIA A100 1.14
Ascend 910B 1.52

Table 2. Inference time comparison across different hardware
platforms. Times are averaged over 100 runs with batch size 1.
Ascend 910B results are measured using FP16 precision, while
NVIDIA results use BF16 precision.

D.3 Inference Time Analysis 206

To evaluate the practical deployment potential of Galaxy- 207
Walker, we conduct inference time benchmarks across dif- 208
ferent hardware platforms. We measure the average infer- 209
ence time per sample using batch size 1, with BF16 pre- 210
cision on NVIDIA GPUs and FP16 precision on Ascend 211
hardware. 212

The results demonstrate that GalaxyWalker achieves 213
practical inference speeds across all tested platforms. The 214
NVIDIA H100 shows superior performance with an average 215
inference time of 0.38 seconds per sample, while the A100 216
and Ascend 910B maintain reasonable inference speeds at 217
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Galaxy Walker: Mass-Weighted Stellar Metallicity Estimation

User: Mass-weighted stellar metallicity measures the abundance of elements heavier than hydrogen and helium in a galaxy’s stars, weighted by their mass. This

aids in understanding the galaxy’s chemical evolution and can be analyzed through multiple perspectives. Specifically, the [Image token] helps observe the color and

brightness variations of celestial objects, providing initial metallicity estimates. The [Spectral token] offers a detailed analysis of spectral lines, such as the strength

and shift of metal lines, to directly infer the mass-weighted metallicity. The [Euclidean token] provides precise coordinates in flat space, aiding in the calculation of

metallicity distribution within stars by using distance information. The [Hyperbolic token] describes the geometrical properties in negatively curved space, modeling

complex star cluster structures and giving geometrical background support for metallicity distribution. The [Sphere token] employs spherical geometry in positively

curved space to understand the distribution of celestial objects within the spherical coordinate system, leading to comprehensive metallicity estimation.

Assistant: NUM

Figure 2. Prompt template for mass-weighted stellar metallicity estimation.

Galaxy Walker: Mass-Weighted Galaxy Age Estimation

User: Mass-weighted galaxy age refers to the average age of stars within a galaxy, weighted by their mass, providing insights into the galaxy’s formation history.

This can be analyzed through multiple perspectives. Specifically, the [Image token] assesses morphology and color via celestial images to estimate the age distribution

of stellar populations in the galaxy. The [Spectral token] primarily uses spectral analysis, such as examining the spectral energy distribution and absorption line

changes, to determine the overall age of the galaxy. The [Euclidean token] provides the galaxy’s coordinates in flat space, assisting in refining age estimation based

on distance and position. The [Hyperbolic token] describes complex geometrical backgrounds in negatively curved space, aiding in the detailed understanding of

mass-weighted age composition. The [Sphere token] utilizes positively curved space in spherical geometry to assist in distribution analysis and age estimation of

different regions within the galaxy.

Assistant: NUM

Figure 3. Prompt template for mass-weighted galaxy age estimation.

1.14 and 1.52 seconds respectively. These results suggest218
that GalaxyWalker is suitable for real-world applications219
across various hardware configurations.220
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Galaxy Walker: Specific Star-Formation Rate Estimation

User: The specific star-formation rate (sSFR) is the rate of star formation per unit stellar mass in a galaxy, indicating how actively the galaxy is forming stars relative

to its existing stellar mass. It can be analyzed through multiple perspectives. Specifically, the [Image token] helps analyze star-forming regions, morphology, and

density variations via celestial images for initial estimation of the star-formation rate. The [Spectral token] provides detailed spectral analysis, especially the intensity

and distribution of emission lines, to measure the current star-formation rate. The [Euclidean token] offers precise positioning in flat space, aiding in inferring the

star-formation rate based on distance and velocity information. The [Hyperbolic token] describes geometrical properties in negatively curved space, modeling complex

cosmic environments and star cluster structures for supporting star-formation rate estimation. The [Sphere token] utilizes positively curved space in spherical geometry

to understand the distribution of star formation within the spherical coordinate system, assisting in specific rate determination.

Assistant: NUM

Figure 4. Prompt template for specific star-formation rate estimation.

Galaxy Walker: Galaxy Smoothness Classification

User: The morphological class of a galaxy can be analyzed using multiple tokens: the morphological classification of galaxies, such as spiral, elliptical, or irregular,

can be directly observed by analyzing their images. Specifically, the [Image token] utilizes celestial images to assess the galaxy’s overall shape and structural features,

helping to classify it as smooth, featured, or an artifact. The [Euclidean token] offers the galaxy’s precise coordinates in flat space, allowing for spatial analysis

and comparison with known morphological classes. The [Hyperbolic token] provides insights into negative curvature space, aiding in the understanding of complex

structures that might influence the galaxy’s morphology. The [Sphere token] uses spherical geometry to interpret the galaxy’s appearance in positively curved space,

helping to refine its classification. Please choose from these options:(a) Smooth (b) Featured or Disk (c) Artifact.

Assistant:
[The choice of true label]

Figure 5. Prompt template for galaxy smoothness classification.

Galaxy Walker: Disk-Edge-On Classification

Prompt: Determining if a galaxy is disk-edge-on can be analyzed using multiple tokens: edge-on disk galaxies are characterized by their flat, edge-like appearance

when observed. This can be directly identified from images. Specifically, the [Image token] offers visual information on the galaxy’s edge-on appearance, which

is indicative of a disk-edge-on orientation. The [Euclidean token] gives the galaxy’s precise coordinates in flat space, assisting in spatial orientation analysis. The

[Hyperbolic token] models the galaxy’s structure in a negatively curved space, helping to understand any distortions that confirm its disk-edge-on nature. The [Sphere

token] uses spherical geometry to analyze the galaxy’s orientation in positively curved space. Please choose from these options: (a) Yes, it is a disk-edge-on galaxy

(b) No, it is not a disk-edge-on galaxy.

Assistant: [The choice of true label]

Figure 6. Prompt template for disk-edge-on classification.

Galaxy Walker: Spiral Arms Classification

Prompt: Determining if a galaxy has spiral arms can be analyzed using multiple tokens: spiral-arm galaxies typically exhibit distinct spiral patterns in images.

Specifically, the [Image token] provides visual information to identify the presence and patterns of spiral arms. The [Euclidean token] provides the galaxy’s

coordinates in flat space, aiding in spatial relationship analysis of spiral structures. The [Hyperbolic token] models the galaxy in a negatively curved space, providing

geometric context for the spiral arms’ formation. The [Sphere token] uses spherical geometry to interpret the distribution and winding of spiral arms in positively

curved space. Please choose from these options:(a) Yes, it is a spiral-arms galaxy (b) No, it is not a spiral-arms galaxy.

Assistant: [The choice of true label]

Figure 7. Prompt template for spiral arms classification.
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Galaxy Walker: Bar Type Classification

Prompt: Determining the type of bar in a galaxy can be analyzed using multiple tokens: bar structures in galaxies can be directly observed through images,

revealing their length and strength. Specifically, the [Image token] offers visual information to observe and classify the bar’s strength in the galaxy. The [Euclidean

token] gives the galaxy’s position in flat space, assisting in the spatial analysis of the bar. The [Hyperbolic token] helps model the galaxy’s structure in negatively

curved space, which aids in understanding the bar type. The [Sphere token] uses spherical geometry to analyze the distribution of stellar masses in the bar, refining its

classification. Please choose from these options: (a) Strong Bar (b) Weak Bar (c) No Bar.

Assistant: [The choice of true label]

Figure 8. Prompt template for bar type classification.

Galaxy Walker: Bulge Size Classification

Prompt: Determining the bulge size of a galaxy can be analyzed using multiple tokens: the size of a galaxy’s bulge can be observed in images by its prominence.

Specifically, the [Image token] provides visual information to assess the bulge’s prominence in the galaxy. The [Euclidean token] offers the galaxy’s coordinates in

flat space, assisting in spatial analysis of the bulge’s physical size. The [Hyperbolic token] models the galaxy in negatively curved space, which helps in understanding

the bulge size in a broader context. The [Sphere token] uses spherical geometry to analyze the distribution and density of stars within the bulge. Please choose from

these options:(a) Dominant Bulge (b) Large Bulge (c) Moderate Bulge (d) Small Bulge (e) No Bulge.

Assistant: [The choice of true label]

Figure 9. Prompt template for bulge size classification.

Galaxy Walker: Galaxy Roundness Classification

Prompt: Determining the shape of a galaxy can be analyzed using multiple tokens: the shape of a galaxy can be directly observed by analyzing its images.

Specifically, the [Image token] provides visual information to classify the galaxy as round, in-between, or cigar-shaped. The [Euclidean token] gives the galaxy’s

precise coordinates in flat space, aiding in the geometric analysis of its shape. The [Hyperbolic token] models the galaxy’s structure in negatively curved space,

providing a complex geometric context for its shape classification. The [Sphere token] uses spherical geometry to analyze the galaxy’s three-dimensional shape in

positively curved space. Please choose from these options: (a) Round (b) In-Between (c) Cigar-Shaped.

Assistant: [The choice of true label]

Figure 10. Prompt template for galaxy roundness classification.

Galaxy Walker: Edge-On Bulge Classification

Prompt: Determining the type of bulge in an edge-on galaxy can be analyzed using multiple tokens: the type of bulge in an edge-on galaxy can be identified

by observing its images, which show whether it is boxy or rounded. Specifically, the [Image token] gives visual information to identify and classify the bulge as

boxy, rounded, or absent in an edge-on galaxy. The [Euclidean token] offers the galaxy’s coordinates in flat space, assisting in the spatial analysis of the bulge.

The [Hyperbolic token] models the galaxy in negatively curved space, helping to understand the bulge type in a broader geometrical context. The [Sphere token]

uses spherical geometry to analyze the three-dimensional distribution of stars within the bulge. Please choose from these options:(a) Boxy Bulge (b) No Bulge (c)

Rounded Bulge.

Assistant: [The choice of true label]

Figure 11. Prompt template for edge-on bulge classification.
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Galaxy Walker: Spiral Winding Classification

Prompt: Analyzing how tightly wound the spiral arms of a galaxy are can be done using multiple tokens: the tightness of spiral arms can be directly observed in

images, showing the winding patterns clearly. Specifically, the [Image token] provides visual information to determine the tightness of the spiral arms. The [Euclidean

token] gives the galaxy’s precise coordinates in flat space, aiding in the spatial analysis of spiral arm winding. The [Hyperbolic token] models the galaxy’s structure

in negatively curved space, helping to understand the geometric properties affecting spiral arm tightness. The [Sphere token] uses spherical geometry to analyze the

three-dimensional winding of the spiral arms. Please choose from these options:(a) Tight Winding (b) Medium Winding (c) Loose Winding.

Assistant: [The choice of true label]

Figure 12. Prompt template for spiral winding classification.

Galaxy Walker: Spiral Arm Count Classification

Prompt: Determining the number of spiral arms in a galaxy can be analyzed using multiple tokens: the number of spiral arms in a galaxy can be directly counted

from images. Specifically, the [Image token] provides visual information to count and identify the number of spiral arms. The [Euclidean token] gives the galaxy’s

precise coordinates in flat space, aiding in the spatial analysis of the spiral arms. The [Hyperbolic token] models the galaxy’s structure in negatively curved space,

providing a geometric context for the number of spiral arms. The [Sphere token] uses spherical geometry to analyze the three-dimensional distribution of spiral arms.

Please choose from these options:(a) 1 Spiral Arm (b) 2 Spiral Arms (c) 3 Spiral Arms (d) 4 Spiral Arms (e) More than 4 Spiral Arms (f) Can’t Tell.

Assistant: [The choice of true label]

Figure 13. Prompt template for spiral arm count classification.

Galaxy Walker: Galaxy Merging State Classification

Prompt: Determining the merging state of a galaxy can be analyzed using multiple tokens: the merging state of a galaxy can be observed through signs of

disturbance or merging in images. Specifically, the [Image token] provides visual information to observe signs of merging or disturbances. The [Euclidean token]

offers the galaxy’s coordinates in flat space, aiding in assessing merging stages from spatial data. The [Hyperbolic token] models the galaxy in negatively curved space,

helping to understand the geometric properties affecting the merging state. The [Sphere token] uses spherical geometry to analyze the three-dimensional interactions

of merging galaxies. Please choose from these options: (a) No Merging (b) Minor Disturbance (c) Major Disturbance (d) Merger.

Assistant: [The choice of true label]

Figure 14. Prompt template for galaxy merging state classification.

Training Strategy Property Estimation (R2 Score) Morphology Classification (F1 Score)

M∗ ZMW tage sSFR SMH DEO SPR BAR BLG RND EOB SWP SAC MRG

Geometry Adapter Only 0.89 0.67 0.50 0.81 0.74 0.95 0.94 0.68 0.81 0.80 0.85 0.77 0.62 0.75
Geometry Adapter + LoRA 0.91 0.69 0.52 0.84 0.76 0.97 0.96 0.71 0.83 0.82 0.87 0.79 0.64 0.77
Full-Parameter Training 0.90 0.68 0.51 0.82 0.77 0.96 0.95 0.69 0.82 0.81 0.86 0.78 0.63 0.76

Table 3. Comparison of different training strategies. Results show that our parameter-efficient approach (Geometry Adapter + LoRA)
achieves comparable or even superior performance to full-parameter training while requiring significantly fewer trainable parameters. The
best results for each metric are shown in bold.
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Figure 15. Performance comparison of different prompt settings. The radar plots show the performance of three prompt settings across
property estimation tasks (left) and morphology classification tasks (right). The Knowledge Background prompts consistently outperform
simpler approaches, demonstrating the effectiveness of incorporating domain knowledge into prompts. The improvement is particularly
notable in property estimation tasks, where the Knowledge Background setting achieves superior performance in all metrics, with the most
significant gains in sSFR estimation. For morphology classification, while the margins are smaller, the Knowledge Background setting still
shows consistent advantages, especially in complex features like Bar and Spiral Arm Count classification.
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