
GuardSplat: Efficient and Robust Watermarking for 3D Gaussian Splatting

Supplementary Material

A. Overview
In this supplementary material, we further provide more dis-

cussions, implementation details, and results as follows:

• Section B depicts the architecture of our message decoder

guided by CLIP [41], and we also conduct a compari-

son for watermarking efficiency against the state-of-the-

art methods.

• Section C conducts an additional evaluation for security,

exploring whether the watermarks can be simply removed

from model files.

• Section D illustrates the visualization results of various

ablations in Tables 3 and 4 of the main paper.

• Section E reports more results, including the quantita-

tive results on larger-capacity messages NL = {64, 72},

bit accuracy across various rendering situations, and the

zoomed-in rendering results between watermarked and

original views.

B. Decoder Architecture and Watermarking
Speed

As shown in Fig. S1, our message decoder only consists of 3

fully-connected (FC) layers, which can accurately map the

CLIP textual features to the corresponding binary messages

after a 5-minute optimization. Thanks to CLIP’s rich rep-

resentation, our decoder can achieve excellent performance

with minimal parameter size. We also investigate the wa-

termarking efficiency between our GuardSplat and state-of-

the-art methods. As shown in the training accuracy curve in

Figure S2, our GuardSplat achieves the highest efficiency,

which only takes 10 minutes to watermark a pre-trained

3DGS asset.

C. Additional Evaluation for Security
We conduct additional experiments to evaluate the secu-

rity of our GuardSplat in Table S1, investigating whether

the malicious users can remove the watermarks from the

model file by pruning the K% of Gaussians, where K ∈
{5, 10, 15, 20, 25}. “Bottom K” denotes pruning K of low-

opacity Gaussians, while “random” denotes randomly prun-

ing K of the Gaussians. As demonstrated, our GuardSplat
still achieves a bit accuracy of 98.74% when 25% of the

low-opacity Gaussians are removed, indicating that simply

removing low-opacity Gaussians does not effectively attack

our method. Though randomly removing the Gaussians can

lead to a significant decline in bit accuracy, it also greatly

affects the reconstruction quality (i.e., PSNR, SSIM, and

LPIPS), resulting in low-fidelity rendering. This experi-
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Figure S1. The architecture of our message decoder. Given an

output feature FT or FV , we first pass it through two FC layers

with GELU activations, where their channels are set to 512 and

256, respectively. Then, we map the feature to the binary message

using a NL-channel FC layer and a Sigmoid activation.
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Figure S2. Training accuracy curves with NL = 32 bits on

Blender [32] dataset. Our GuardSplat achieves high training effi-

ciency, which only takes 10 minutes to watermark a 3D asset.

mental result demonstrates that the malicious cannot di-

rectly remove the watermarks from the model file, verifying

the security of our GuardSplat.

D. Additional Visual Comparisons
D.1. Various Message Embedding Strategies
In the main paper, we explore the performance under vari-

ous message embedding strategies with NL = 32 bits (see

quantitative results in Table 3). For better comparisons, we

further visualize the results of various message embedding

strategies in Figure S3. As shown, the proposed SH-aware

module achieves superior bit accuracy and reconstruction

quality to the competitors.

D.2. Various Loss Combinations
In the main paper, we quantitatively compare the perfor-

mance across various loss combinations in Table 4. We also

conduct a visual comparison of these ablation variants in



Table S1. Security analysis across various pruning ratios K%.

Bottom K denotes removing K% of the low-opacity Gaussians,

while Random denotes randomly removing K% of the Gaussians.

%

Bottom K Random

Bit Acc PSNR SSIM LPIPS Bit Acc PSNR SSIM LPIPS

5 99.04 39.38 0.9939 0.0022 98.59 37.76 0.9916 0.0033

10 99.02 39.06 0.9937 0.0025 96.87 36.35 0.9891 0.0047

15 98.99 38.68 0.9933 0.0031 94.68 35.14 0.9832 0.0063

20 98.94 38.33 0.9928 0.0037 91.98 33.98 0.9779 0.0081

25 98.74 37.87 0.9922 0.0041 88.59 31.50 0.9721 0.0103

Figure S3. Visual comparisons between various message em-
bedding strategies and our SH-aware module. Heatmaps at the

bottom show the differences (×10) between the watermarked and

Groundtruth. Red text indicates the best performance.

Figure S4. As shown, “Lrecon + Lmsg + Loff” achieves the

best performance in bit accuracy and reconstruction quality.

E. More Results
E.1. Quantitative Results on Larger-Capacity Mes-

sages
To further investigate the superiority of our GuardSplat
in capacity, we supplement the results on larger message

lengths (NL ∈ {64, 72}) in Table S2. As demonstrated,

the bit accuracy and reconstruction quality of our 72-bit

results are still higher than the state-of-the-art methods on

NL ∈ {16, 32, 48} bits reported in the main paper (see Ta-

ble 1), significantly improve the capacity of existing base-

lines.

E.2. Bit Accuracy across Various Rendering Situa-
tions

We explore the extraction accuracy of learned SH offsets

across the following situations: 1) SH Noise; 2) Light Con-

ditions; 3) Occlusions; and 4) Viewing Angles. Specifi-

cally, to simulate different lighting conditions, we first train

a 3DGS asset of “Lego” from the TensoIR [16] dataset

in ”RGBA” mode. We then freeze all Gaussian attributes

while optimizing the SH features to adapt to various illu-

mination scenarios, such as “light”, “sunset”, and “city”.

Table S2. Quantitative results of our GuardSplat on Blender

[32] and LLFF [31] datasets with NL ∈ {64, 72} bits.

NL Bit Acc PSNR SSIM LPIPS

64 97.41 37.76 0.9899 0.0040

72 96.64 36.47 0.9866 0.0053

Figure S4. Visual comparisons of various loss combinations.
“Ours” denotes the combination of Lmsg +Lrecon +Loff. Heatmaps

at the bottom show the differences (×10) between the water-

marked and Groundtruth. Bold text indicates the best overall per-

formance.

We train only the SH offsets in “RGBA” mode and add

them to the SH features of other lighting modes for eval-

uation. As shown in Figure S5, GuardSplat achieves good

robustness against SH noise (a) and light conditions (b) by

adding noise to SH features in training. Since the occluded

areas can be removed by segmentation models (e.g., Seg-

ment Anything Model [21], and Grounding DINO [25]),

we train GuardSplat to extract messages from randomly

masked views (≤ 20%). It improves the robustness of our

GuardSplat against various occlusions (c). GuardSplat is

inherently robust to various viewing angles (d) since it is

designed for 3D.

E.3. Zoomed-in Rendering Results
Since SH features produce highly realistic shading and

shadowing, altering them may reduce fidelity, especially in

the specular areas. To clearly show how the SH offsets are

changing the rendering results, we conduct a visual com-

parison of zoomed-in rendering results between the origi-

nal 3DGS and our GuardSplat of “ball” on the Shiny [54]

dataset in Figure S6. As shown, GuardSplat can preserve

the original metallic luster of assets.
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Figure S5. Bit accuracy across various rendering parameters.
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Figure S6. Zoomed-in rendering results between the original

3DGS and our GuardSplat.


