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Abstract

This is the supplementary document of HandOS, includ-
ing implementation details (Section I), metrics (Section II),
discussion on left-right classification (Section III), detector
adaption (Section IV), and HO3D results (Section V), as
well as more comparison (Section VI), efficiency analysis
(Section VII), and visual results (Section IX). Finally, fail-
ure cases (Section VIII) and limitations are analyzed (Sec-
tion XI).

I. Implementation Details

I.1. Side tuning

As shown in Fig. I, we adopt 4-scale feature maps in the
visual backbone. For each scale, we utilize 3 convolution
layers for feature mapping. Finally, 4-scale mapped features
form Fs.
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Figure I. The architecture of side tuning.
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I.2. Loss function and Training

The full loss function is given as follows,
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OKS = 4, λnormal = 5, λnc = 0.5.
The HandOS can be trained in an end-to-end manner

with L. To accelerate convergence and reduce experimental
time, we adopt a two-stage training. First, a 2D model is
trained, whose results are reported in Table 6 of the main
text. The 2D model also follows the overall architecture in
Fig. 2 of the main text, with all interactive layers replaced
by 2D layers. Also, the 2D model does not involve query
lifting and 3D vertices/camera prediction. The training data
include HInt [11], COCO [8], and OneHand10K [13], with
the loss function of λJ2DLJ2D

+λ2D
OKSL2D

OKS . The 2D train-
ing cost 3 days on 8 NVIDIA A100 GPUs.

Then, with the weights of the 2D model for initialization,
we conduct our experiments on diverse benchmarks with
their respective training data.

Ablation studies of loss functions are present in Table I.
LOKS improves the 2D learning efficiency from various-
size instances. Lsp = Lnormal + Ledge is crucial for struc-
tural shape learning, while Lnc is a smooth regularization.
Other losses are strictly required.

II. Metrics
Percentage of correctly localized keypoints (PCK) is a
metric used to evaluate the accuracy of 2D keypoint local-
ization. A keypoint is considered correct if the distance be-
tween its predicted and ground truth locations is below a



LOKS Lnc Lsp Ego4D2D-PCK FreiHandPV

✓ ✓ ✓ 85.3 5.6
✓ ✓ 83.2 5.8

✓ 83.2 5.9
82.9 13.2

Table I. Ablation study of loss functions.

specified threshold. We use a threshold of 0.05, 0.1, and
0.15 box size, i.e. PCK@0.05, PCK@0.1, and PCK@0.15.

Mean per joint/vertex position error (MPJPE/MPVPE)
measures the mean per joint/vertex error by Euclidean dis-
tance (mm) between the estimated and ground-truth coordi-
nates. Since some global variation cannot be induced from
a monocular image, we use Procrustes analysis [4] to focus
on local precision, i.e., PA-MPJPE/MPVPE.

F-score represents the harmonic mean of recall and preci-
sion calculated between two meshes with respect to a spec-
ified distance threshold. Specifically, F@5 and F@15 cor-
respond to thresholds of 5mm and 15mm, respectively.

Area under the curve (AUC) represents the area under
the PCK curve plotted against error thresholds ranging from
0 to 50mm with 100 steps.

III. Discussion on Left-Right Classification

The recognition of left and right hands is a difficult task.
Previous works usually achieve this with body prior [14].
That is, the left and right are easy to understand with whole-
body structure. However, there are many scenarios in which
the hand appears without a body, such as in egocentric
scenes. Here, the classification error increases, harming the
performance of the multi-stage method.

Our one-stage pipeline is free from the impact of prior
left-right information and uses the normal direction to ob-
tain the left-right category based on the reconstructed mesh.
In this manner, as long as the reconstruction results are cor-
rect, the left-right hand classification is also accurate.

Compared with the previous “left/right → mesh”
paradigm, our “mesh → left/right” investigates another way
for hand-side understanding. As a result, our method is su-
perior in left-right classification. Based on the HInt test
set, ViTPose [14] achieves a detection recall of 94.6% and
left-right classification precision of 93.8% with its default
settings. In contrast, the HandOS based on Grounding
DINO reaches a detection recall of 100% (with a confidence
threshold of 0.1) and left-right classification precision of
97.9%. Note that the detection precision cannot be calcu-
lated since Hint does not label all positive instances in an
image.

IV. Adaptation of Other Detector

We use DINO-X [12] as the detector to build the HandOS,
which achieve 0.428 box AP when measuring hand cate-
gory [8] on COCO val2017 [9]. The metrics are shown in
Table II, and it is evident that our HandOS is adaptable to
all DETR-like detectors.

Method New Days VISOR Ego4D FreiHand

main text 75.8/75.9 85.3/85.4 85.3/85.3 5.6
w/ DINO-X 76.3/76.5 84.8/84.6 85.6/85.5 5.5

Table II. The numbers of the Hint benchmark are PCK@0.1 com-
puted with 2D/projected joints. The numbers of FreiHand is PA-
MPVPE in mm.

V. More HO3Dv3 Analysis

As explained in Fig. 5 of the main text, the inference with
the ground-truth box is ill-suited, which is prevalently em-
ployed by previous work. We do not follow this setting and
use the actual detection box for inference. In addition, the
misaligned detection and ground truth could also induce ad-
verse effects for HandOS training, i.e., query filtering based
on ground truth becomes less efficient during training. De-
spite these unfavorable conditions, the HandOS still reaches
superior results, e.g. 8.4 PA-MPJPE.

Also, it is necessary to evaluate the model performance
with Ho3Dv3 GT boxes. As shown, although GT boxes
are not involved in training, the inference can adapt to
them, thanks to adaptive within-box feature localization
of deformable attention, indicating our robustness to box
changes.

To relieve the issue during training, we employ more
training data, including FreiHand [15], HInt [11], COCO
[8], OneHand10K [13], HO3Dv3 [5], DexYCB [1], Com-
pHand [2], and H2O3D [6]. As shown in Table III, we
achieve state-of-the-art numeric results. Note that our com-
bined training data contains 933K samples, which is smaller
than that of Hamba with 2,720K samples.

Method PJ ↓ PV ↓ F@5 ↑ F@15 ↑

AMVUR [7] 8.7 8.3 0.593 0.964
Hamba* [3] 6.9 6.8 0.681 0.982

HandOS (ours) 8.4 8.4 0.584 0.962
w/ GT box (ours) 8.4 8.5 0.581 0.962
HandOS* (ours) 6.8 6.7 0.688 0.983

Table III. Results on HO3Dv3. Errors are measured in mm. *

denotes using extra training data.



VI. More Qualitative Comparison with
HaMeR

More comparisons of HandOS and HaMeR are presented
in Fig. II, where we are superior in accurate detection (A),
novel-style adaptation (B), fine image alignment with accu-
rate pose/shape (C, D), and reasonable occlusion awareness
(E, F).

Figure II. Visual comparison between HandOS and HaMeR .

VII. Comparison of Inference Efficiency.
With P,H denoting the number of person and hand, our de-
tector+decoder has (301+108H)G FLOPs, using 8G mem-
ory; ViTPose+HaMeR has (484P+244H)G FLOPs, using
12G memory. On RTX3090 and PyTorch, our detector takes
0.5s, and decoder time is from 0.1s (H=1) to 0.7s (H=10);
VitPose+HaMeR takes (0.4+0.06P+0.1H)s.

VIII. Failure Cases
As shown in Fig. III, the HandOS could fail in false positive
(the 1st row), left-right awareness (the 2nd row), inaccurate
pose (the 3rd row), and geometry artifacts (the 4th row),
when handling extreme lighting, occlusion, and shape con-
ditions.

IX. Qualitative Results
Referring to Fig. IV–VII, we illustrate samples in our used
datasets. As shown, the HandOS can handle various sce-
narios with hard poses, object occlusion, and etc. We also
demonstrate that our HandOS is capable of real-world ap-
plications for difficult textures, shapes, lighting, and styles,
as shown in Fig. VIII. The model for Fig. VIII is trained
with FreiHand [15], HInt [11], CompHand [2], COCO [8],
OneHand10K [13]. Note that the HandOS exhibits zero-
shot generation across styles (e.g., painting, cartoon), ben-
efiting from the open-world representation of Grounding
DINO [10].

X. Supplemental Video
Please refer to our homepage for dynamic results, which
demonstrates frame-by-frame processing without employ-
ing any temporal strategies.

Figure III. Failure cases. Red arrows indicate errors. Samples in a
triplet are input, 2D detection and joints, and 3D mesh.

XI. Limitations and Future Works
Geometry prior. The HandOS does not incorporate a ge-
ometric prior like MANO, meaning that the hand shape is
learned entirely from data without relying on any predefined
structural knowledge. In our opinion, incorporating an im-
plicit prior (e.g., a variational autoencoder) could accelerate
the convergence of HandOS and improve the geometric re-
alism of the predicted hand geometry.

Pose representation. We use keypoints to unify left-right
hand representation. Nevertheless, obtaining a rotational
pose (i.e. θ in MANO) is less straightforward and requires
an extra inverse kinematics module.

Temporal coherence. The HandOS is designed for sin-
gle image processing without considerations for temporal
coherence, which may result in jerky outputs when applied
to video inference.

Future works. We plan to extend HandOS to provide ver-
satile hand understanding. In addition to detection, 2D pose,
and 3D mesh, other properties such as segmentation, tex-
ture, and object contact are also valuable considerations.
Furthermore, the HandOS will be utilized to analyze hu-
man manipulation skills, contributing to advancements in
embodied intelligence.
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Figure IV. Visualization of FreiHand evaluation set. Samples in a triplet are input, 2D detection and joints, and 3D mesh.



Figure V. Visualization of HO3Dv3 evaluation set. Samples in a triplet are input, 2D detection and joints, and 3D mesh.



Figure VI. Visualization of DexYCB test set. Samples in a triplet are input, 2D detection and joints, and 3D mesh.



Figure VII. Visualization of HInt test set. Samples in a triplet are input, 2D detection and joints, and 3D mesh.



Figure VIII. Visualization of practical application. Samples in a triplet are input, 2D detection and joints, and 3D mesh.


