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6. Similarity to Uncertainty/Expressivity to Un-
certainty Quantifiability

The projection function ϕ is an encoding from Rn → Rd

that can be mathematically expressed as:

ϕ(z) = Φ · z (10)

where Φ ∈ Rd×n is the projection matrix and the output
hypervector space H is an inner-product space.

According to [57], the initialization of Φ can limit the
learnability of a VSA system. They proved this by defining
VSA systems by their expressivity as follows:

Definition 1 A VSA system can express a similarity ma-
trix M ∈ RN×N if for any ϵ > 0, there exists a d ∈ N
and d-dimensional hypervectors H1,H2, · · · ,HN such that
|Mi,j − δ(Hi,Hj)| ≤ ϵ

Since M represents the knowledge of all sample relations
in the H space, the expressivity depends on whether ϕ can
capture the similarities of M accurately. Given the knowl-
edge of M, we derive an expression for the uncertainty
quantifiability of a VSA system as follows:

Corollary 1 A VSA can express an uncertainty similarity
matrix U ∈ RL×N if for any η > 0, there exists a d ∈ N
and d-dimensional hypervectors H1,H2, · · · ,HN such that
|Ui,j − δ(Hi,Hj)| ≤ η.

In this Corollary, the rows of the uncertainty similarity matrix
U are the prototypes Hl

m (Equation 1) and the columns are
the similarities of each hypervectors H1,H2, · · · ,Hn to
each Hl

m (Equation 2).
Expressivity thus directly impacts a VSA’s ability to ac-

curately quantify uncertainty. 3 [57] showed that classical
initializations using the kernel trick [43] has limited expres-
siveness. Instead, Random Fourier Features (RFF) can, in
expectation, exactly achieve M or some approximation of
M .

However, the above assumes that the orthogonality be-
tween hypervectors is maintained by ϕ. When assessing
whether some Hz ∈ Hl

m and the encodings are perfectly
orthogonal, we get the expression |δ(Hz,Hl

m)| = I1(Hz ∈
Hl

m) where 1 is an indicator that evaluates to one if true
and zero otherwise, I = minz∈Z ||ϕ(z)||2 when δ is the
dot-product or I = 1 when δ is the cosine similarity.

3Obtaining M involves solving an intractable linear programming prob-
lem of size exponential in N , making it unrealistic both from a computation
and memory perspective for arbitrarily large datasets.

According to [48], when orthogonality is not maintained,
it can cause interference in the hypervector encoding. They
characterizes this as the incoherence which limits the ex-
pressivity of ϕ as follows:

Definition 2 For µ ≥ 0, ϕ is µ-incoherent if for all distinct
z, z′ ∈ Z we have

|δ(ϕ(z), ϕ(z′))| ≤ µI (11)

When the encoding ϕ(z) and ϕ(z′) are not perfectly
orthogonal (µ = 0), the interference causes a ∆ “cross-talk”
such that δ(Hz,Hl

m) = I1(Hz ∈ Hl
m)+∆. By combining

Corollary 1 & Definition 2 we propose a new definition
for the uncertainty quantifiability of a µ-incoherent ϕ as
follows:

Definition 3 A µ-incorherent VSA system can express an un-
certainty matrix U ∈ RL×N if for any η, µ > 0, there exists
a d ∈ N and d-dimensional hypervectors H1,H2, · · · ,HN

s.t. |Ui,j | ≤ µI + η

Thus, to reliably quantify uncertainty, we must ensure the
contribution of µ is small. Given that the loss of orthogo-
nality contributes to incoherence, the instinct is to improve
ϕ by enforcing orthogonality onto the initialization of the
projection matrix Φ.

7. Proof of Equation
Given the following inequalities:

|Ui,j − δ(Hi,Hj)| ≤ η (1)
|δ(Hi,Hj)| ≤ µL (2)

Step 1. Rewrite (1) & (2) as follows:

−η ≤ Ui,j − δ(Hi,Hj) ≤ η (3)
−µL ≤ δ(Hi,Hj) ≤ µL (4)

Step 2. Add δ(Hi,Hj) to both sides of (1):

δ(Hi,Hj)− η ≤ Ui,j ≤ δ(Hi,Hj) + η (5)

Step 3. Define upper and lower bounds for (4) and (5):
Upper Bounds:

δ(Hi,Hj) ≤ µL (6)
Ui,j ≤ δ(Hi,Hj) + η (7)



Lower Bounds:

−µL ≤ δ(Hi,Hj) (8)
δ(Hi,Hj)− η ≤ Ui,j (9)

Step 4. Substitute terms and rewrite bounds:
Upper Bounds:

Ui,j ≤ µL+ η (10)

Lower Bounds:

−µL− η ≤ Ui,j (11)

Step 5. Rewrite inequality, end of proof:

−(µL+ η) ≤ Ui,j ≤ µL+ η = |Ui,j | ≤ µL+ η (12)

8. FLOPs Computation Approximation
We approximate the number of Floating-Point Operations for
each method by deriving the major contributing operations
as follows:

Matrix Multiplication FLOPs Approximation: Projec-
tion encoding uses the dot product operation which involves
matrix multiplication and addition. We assume an input size
of In = 1× C, a projection matrix size of Proj = C ×D,
and an expected output size of Out = B × D. For each
element Outi,j there are C multiplications. For each ele-
ment Outi,j there are C − 1 additions (because we need to
add C products together, which requires C − 1 additions).
Where B is the batch size (we are assuming B=1 for the sake
of simplicity), C is the channel size, and D is the output
dimension/hyperdimension. Thus, for the entire output Out
with B ×D elements:

Total Multiplications = B ·D · C (13)
Total Additions = B ·D · (C − 1) (14)

Total FLOPs = B ·D · C (15)
+B ·D · (C − 1)

= 2 ·B ·D · C −B ·D (16)
= B ·D(2 · C − 1) (17)
≈ 2 ·B ·D · C (18)

Einstein Summation FLOPs Approximation: is a gen-
eral case of matrix multiplication where we used it for our
Channel-Projection method. Specifically, Einsum(“BC,CD-
>BCD”, A, B), which reduces the computation to an outer
product, obtains Out = B × C ×D with 0 addition FLOPs:

Total Multiplications = B ·D · C (19)
Total Additions = 0 (20)

Total FLOPs = B ·D · C (21)

Cosine Similarity FLOPs Approximation:
cosine_similarity(u, v) = u·v

||u||||v|| involves dot product
along with division and two Euclidean norm operations.
We assume an input u of size B × D and the comparison
v is of size 1 × D. Since B = 1, the dot product is
between two vectors, thus involving D multiplications and

D − 1 additions. For Euclidean Norm ||u|| =
√∑D

d=1 u
2
d,

squaring involves D multiplications, summing involves
D − 1 additions, and we assume square root is 1 operation,
thus the total FLOPs for cosine similarity is:

Dot Product FLOPs = D + (D − 1) (22)
= 2 ·D − 1 (23)

Euclidean Norm FLOPs = D + (D − 1) + 1 (24)
= 2 ·D (25)

Division + Norm Mult. FLOPs = 2 (26)
Total FLOPs = (2 ·D + 2 ·D (27)

+ 2 ·D + 2)

= 6 ·D + 1 ≈ 6 ·D (28)

Entropy FLOPs Approximation: The deterministic en-
tropy equation H(P ) = −

∑
i P (i)logP (i) involves ad-

dition from summation, multiplication, and logarithm. We
assume that P has dimensions B·C ·H ·W , and thus the num-
ber of addition, multiplication, and logarithmic operations
depends on the number of elements which is B · C ·H ·W .
Therefore, the total number of FLOPs for Entropy is:

Total elements = B · C ·H ·W (29)
Mult. + Log FLOPs = 1 + 1 = 2 (30)

Sum FLOPs = B · C ·H ·W (31)
Total FLOPs = 2 · Tot. elems. (32)

+ Sum FLOPs
= 3 ·B · C ·H ·W (33)

We note that predictive entropy and mutual information are
more complex operations that induce more FLOPs (refer
to [49]), for simplicity, we assume the same FLOPs as the
deterministic entropy.

From here, we demonstrate the aiMotive FLOPs computa-
tions in Table 8 as an example with B = 1. The BEVFusion
model from aiMotive generates RGB features (BEVDepth)
and Lidar+Radar (VoxelNet) features where the total feature
dimensions together are C × H × W = 336 × 64 × 512
(RGB = 80 channels and Lidar+Radar = 256).

InfMCD: involves 10 forward passes to generate feature
outputs (realistically all previous computation layer FLOPs
in the model should be accounted for), followed by predic-
tive entropy, mutual information, and deterministic entropy
computations (we assume 3× deterministic entropy FLOPs)



Total elements = 336× 64× 512 = 11, 010, 048 (34)
Total FLOPs = 10 outputs × 3× Entropy FLOPs (35)

= 30× 3× 11, 010, 048 (36)
= 990, 904, 320 = 990.90 MFLOPs (37)

InfNoise: involves 10 forward passes to generate Gaus-
sian noise added features (realistically FLOPs for generating
Gaussian noise and adding noise to the input of a specified
layer along with FLOPs for obtaining the new layer outputs
should be accounted for), followed by predictive entropy,
mutual information, and deterministic entropy computations
(we assume 3× deterministic entropy FLOPs). This results
in the same approximated FLOPs as InfMCD.

LDU: involves comparing the cosine_similarity of the
features with the learned prototypes along with a Conv2d
for uncertainty estimation (ignored due to negligible cost).
Since LDU allows arbitrary prototypes, we set it to L = 4,
the same number as our method based on the number of
aiMotive scenarios. Additionally, LDU’s prototypes are
defined with the shape 1× L× C ×H ×W .

Vector u dimension = 336× 64× 512 (38)
= 11, 010, 048 (39)

Total FLOPs = L× Cos_Sim FLOPs (40)
= 4× 6× u (41)
= 24× 11, 010, 048 (42)
= 264, 241, 152 (43)
= 264.24 MFLOPs (44)

HyperDUM: involves the feature projection and cosine
similarity computation, where we set d = 10k as real-valued
hyperdimensional prototypes and L = 4. Particularly, for
the Einsum Matrix multiplication, the

Vector u dim = 1× d = 10k (45)
Tot. FLOPs w/o Chan. Proj. = MatMul FLOPs (46)

+ L× Cos_Sim FLOPs
= 2× d× 336 + 4× 6× u (47)

= 2× 10k × 336 + 24× 10k (48)
= 6.96 MFLOPs (49)

Vector u Chan. Proj. dim = 1× c× d = 3.36M (50)
Tot. FLOPs w/ Chan. Proj. = Einsum FLOPs + (51)

L× Cos_Sim FLOPs
= d× c+ 4× 6× u (52)

= 10k × 336 + 24× 3.36M (53)
= 84.00 MFLOPs (54)

HyperDUM FLOPs breakdown by component for aiMotive:
4x (patches) spatial projection=4*6.72M=26.88M, 4x spatial

similarity=4*240K=960K, channel projection=3.36M,
channel similarity=80.64M (72% of all costs). Uncertainty
weights=(kern_h*kern_w*in_c+1)*(out_h*out_w*out_c)
=(4*1*336+1)*(1*1*336)=452K. (Computation com-
puted for Conv layer described in Architectures figure,
approx. same for all methods, thus ignored).



9. Architectures

Figure 5. Architectures diagram showing where we insert the uncertainty module for pre and post fusion methods. The uncertainty weighting
is a single Conv layer, Input: (B,M,P,C)/(B,M,P,1), kernel=(P,1), stride=(P,1), Output: (B,M,1,C)/(B,M,1,1) for channel/patch weights
respectively. B=Batch, M=Modality, P=Prototype, C=Channel. Channel/Patch weights are multiplied uniformly across all spatial/channel
dimensions per channel/patch. The weighting module performs dimension matching automatically.



10. Additional Experiments

UQ Method Cloudy Foggy Night Rainy Sunny MB OE UE LJ EL Mean
CMNeXt [58] 53.05 54.06 50.63 54.26 51.88 49.25 49.40 47.08 52.28 53.62 53.00
InfMCD [34] 53.67 54.83 51.42 54.72 52.37 49.67 51.25 51.18 53.02 54.02 53.41
InfNoise [34] 53.25 54.37 50.85 54.52 51.95 49.39 51.08 50.86 52.83 53.37 53.19
PostNet [5] 53.38 54.10 51.13 54.39 51.89 49.48 51.15 50.99 52.68 53.20 53.15
LDU [10] 53.66 54.40 51.41 54.46 51.94 49.38 51.32 51.04 52.92 53.31 53.37
HyperDUM 53.77 54.91 51.52 54.75 52.37 49.69 51.38 51.42 53.17 53.78 53.69

Table 9. DeLiVER test set with adverse weather and corner cases: Lidar-Jitter (LJ), Event Low-resolution (EL). (Metrics: mIoU)

UQ Method Highway Urban Night Rain Mean (∆)
HyperDUM 72.23/69.58 64.77/64.48 76.69/75.15 44.78/45.48 66.70/66.00
– w/o Patch (4x) Proj. 70.74/68.55 64.35/64.15 75.53/73.83 40.09/41.69 65.67/65.23 (-1.03/-0.77)
– w/o Chan Proj. 70.62/68.94 62.03/59.90 75.11/74.04 34.01/36.21 64.43/64.25 (-1.24/-0.98)

Table 10. aiMotive ablation under diverse scenes. (Metrics: all-point AP/11-point interpolation AP)

UQ Method MB OE UE LF Mean (∆)
HyperDUM 64.39/63.99 66.16/65.39 64.18/63.91 65.89/65.22 65.16/64.62
– w/o Patch (4x) Proj. 63.58/63.35 65.26/64.62 63.38/63.40 64.85/64.42 64.27/63.95 (-0.89/-0.67)
– w/o Chan Proj. 62.65/62.43 64.76/63.16 62.29/62.22 63.60/63.02 63.47/62.83 (-0.80/-0.88)

Table 11. aiMotive ablation under corner cases. (Metrics: all-point AP/11-point interpolation AP)

UQ Method Cloudy Foggy Night Rainy Sunny MB OE UE LJ EL Mean (∆)
HyperDUM 53.77 54.91 51.52 54.75 52.37 49.69 51.38 51.42 53.17 53.78 53.69
– w/o Patch (4x) Proj. 53.22 54.60 51.16 54.69 52.07 49.69 51.25 51.16 53.13 53.69 53.37 (-0.32)
– w/o Chan Proj. 53.27 54.44 50.87 54.31 51.83 49.47 51.02 50.54 52.65 53.47 53.15 (-0.54)

Table 12. DeLiVER test set ablation with adverse weather and corner cases. (Metrics: mIoU)

10.1. #Prototypes & Held-Out Scenarios

Experiment UQ Method Cloudy Foggy Night Rainy Sunny Mean
Baseline CMNeXt 68.70 65.66 62.46 67.50 66.57 66.30

# Prototypes: 3 HyperDUM 69.50 66.00 63.35 68.28 67.17 66.94
# Prototypes: 10 HyperDUM 70.04 66.48 64.07 68.85 67.67 67.53

Held-Out Scenarios

InfMCD 68.61 65.93 62.37 67.12 66.90 66.29
InfNoise 69.59 65.66 62.93 68.13 66.95 66.75
PostNet 69.10 65.91 62.37 68.10 66.52 66.50

LDU 69.46 65.36 62.49 67.68 66.89 66.48
HyperDUM 69.27 66.08 63.75 68.15 66.81 66.91

Table 13. Varied prototypes and held-out experiments (DeLiVER).



Table 13 aims to evaluate the impact on performance
of HyperDUM under two non-ideal conditions. 1) What
would happen if we have poorly-defined scenarios, facili-
tating prototype definition under non-ideal conditions, i.e.
fewer prototypes (e.g., 2 prototypes for 4/5 scenarios) and
more prototypes for extremely specific data attributes. 2)
What would happen if HyperDUM is trained without a sce-
nario in the dataset, prototypes are computed only for the
available scenarios (training data), and then the model is
evaluated with samples from the held-out scenario? To test
these scenarios for fewer prototypes (protos) we merged:
cloud_fog, night_rain, sun. For more protos, we split by
maps (1,2,3,6): cloud1_2, cloud3_6, fog1_2, fog3_6, · · · . Ta-
ble 13 shows that fewer protos by careless merging achieve
suboptimal performance, while fine-grained protos improve
performance. Merging different underlying uncertainty at-
tributes (cloud/fog) introduces ambiguity (what is a cat/dog
hybrid?). Protos should be formed by samples that share all
underlying uncertainty attributes. Praticality: Well-curated
datasets, i.e., nuScenes, Waymo, KITTI, etc. all capture
meta-data facilitating prototype definition. With no/limited
meta-data, one can apply unsupervised methods (i.e. clus-
tering) to identify prototypes or generate new prototypes
using diffusion models. Held-out Scenarios: Average per-
formance drops as expected, but compared to others, Hyper-
DUM maintains competitive performance. Particularly in
more uncertain (fog/night/rain) held-out scenarios.

10.2. Uncertainty Visualization

Figure 6. Channel/Patch Projection & Bundling (CPB/PPB) effects visualization on prediction uncertainty map (DeLiVER).



Figure 6 ablates the channel and spatial uncertainty
weighting performance through the prediction uncertainty
map across scenarios and noise effects (Gaussian Blur 7x7
and 25x25). Generally, channel sharpens and spatial refines
the uncertainty maps in-detail. Additionally, we see that
CPB and PPB together improve the overall robustness to
Gaussian blur noise when compared to the baseline model.

10.3. Fine-Tuning Details

Hyper-parameter aiMotive DeLiVER
Architecture BEVFusion CMNeXt
backbone ResNet CMNeXt-B2
learning rate 1e-3/64 6e-5
batch size 1 1
epochs 200 200
EarlyStopping (epochs) 10 10
weight decay 1e-7 0.01
Scheduler MultiStepLR warmuppolylr
Prototypes 4 5
Forwards (InfMCD & InfNoise) 10 10
Projection Type Ortho. Rand. Fourier Proj. Ortho. Rand. Fourier Proj.
Channel Hyperdimension 10000 5000
Patch Hyperdimension 10000 5000
Number of Patches 4 4

Table 14. Hyper-parameter configuration used for aiMotive and DeLiVER Fine-tuning. The projection function uses Random Fourier
Features (rfflearn python) similar to [57] which has no learned parameters. Prototype formation uses the train set (100%) but can be a subset
(importance selection), with only one pass through train data instead of multi-epochs.

10.4. Artifical Noise Injection Paramters

Noise Injection Configuration Setting
Over Exposure rescale_intensity(data, in_range=(0, int(np.max(data)/2)), out_range=(0,255)).astype(uint8)
Under Exposure rescale_intensity(data, in_range=(int(np.max(data)/2), int(np.max(data))), out_range=(0,255)).astype(uint8)
Motion Blur GaussianBlur(kernel_size=(25,25), sigma=16)
Foggification BetaRandomization(beta=1e-5)

Table 15. Configuration for aiMotive artificial noise injections. GaussianBlur from torchvision.transforms, rescale_intensity from skim-
age.exposure, for foggification refer to [3]. These injections are only performed on the test set during evaluation and never seen during
training/validation.
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