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A. Proof of Theorem 1 (Submodular Proper-
ties)

Proof. Consider two sub-sets SA and SB in set V , where
SA ⊆ SB ⊆ V . Given an element α, where α = V \ SB .
Let α = V \ SB represent an element not in SB . For the
function F(·) to satisfy the submodular property, the fol-
lowing necessary and sufficient conditions must hold dimin-
ishing returns,

F (SA ∪ {α})−F (SA) ≥ F (SB ∪ {α})−F (SB) ,
(S1)

and monotonic non-negative, F(SA ∪ {α})−F(S) ≥ 0.

For Clue score (Eq. 2), let fcls(S) = sc, freg(S) = b,
assuming that fcls and freg(S) is differentiable in S, the in-
dividual element α of the collection division is relatively
small, according to the Taylor decomposition [6], we can lo-
cally approximate fcls (SA + α) = fcls (SA) +∇fcls (SA) ·
α, and freg (SA + α) = freg (SA) + ∇freg (SA) · α. Since
object detection can output many candidate boxes, we can
regard the model output with added sub-elements as incre-
mental output, that is, fcls (SA + α) = sc+∇fcls (SA)·α =
sc + s∗c , freg (SA + α) = b+∇freg (SA) ·α = b+ b∗. As-
suming that the searched α is valid, i.e., ∇freg > 0 and

*Corresponding authors.

∇fcls > 0. Thus:

sclue(SA + α, btarget,c)− sclue(SA, btarget, c)

= max
bi∈freg(SA+α),sc,i∈fcls(SA+α)

IoU(btarget, bi) · sc,i

− max
bi∈freg(SA),sc,i∈fcls(SA)

IoU(btarget, bi) · sc,i

=max(sclue(SA, btarget, c), max
bi∈b∗,sc,i∈s∗

c

IoU(btarget, bi) · sc,i)

− sclue(SA, btarget, c)

=max(0, max
bi∈b∗,sc,i∈s∗

c

∇freg (SA) · ∇fcls (SA) · α2)

≥0,
(S2)

the clue score satisfies the monotonic non-negative prop-
erty in the process of maximizing the marginal effect.
Since SA ⊆ SB ⊆ V , for the model’s candidate boxes,
freg(SB) > freg(SA), then the range of the gain candidate
box b∗A that can be generated is freg(V ) − freg(SA). Af-
ter introducing the new element α, a new candidate box
with a gain b∗A > b∗B , closer to the target, can be gen-
erated. If both SA and SB contain positive subsets, then
∇fcls (SB) will become less severe or even disappear [12],
thus, ∇fcls (SA) > ∇fcls (SB). So we have:

max
bi∈b∗

A,sc,i∈s∗
c

∇freg (SA) · ∇fcls (SA) · α2 >

max
bi∈b∗

B ,sc,i∈s∗
c

∇freg (SB) · ∇fcls (SB) · α2,
(S3)

combining Eq. S2, we have:

sclue(SA + α, btarget,c)− sclue(SA, btarget, c) >

sclue(SB + α, btarget,c)− sclue(SB , btarget, c).
(S4)
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Table S1. Evaluation of faithfulness metrics (Deletion, Insertion AUC scores, and average highest score) and location metrics (Point Game
and Energy Point Game) on the MS-COCO validation set for correctly detected or grounded samples using traditional object detectors.

Detectors Methods Faithfulness Metrics Location Metric

Ins. (↑) Del. (↓) Ins. (class) (↑) Del. (class) (↓) Ins. (IoU) (↑) Del. (IoU) (↓) Point Game (↑)

Mask R-CNN [4]
(Two-stage)

Grad-CAM [9] 0.2657 0.2114 0.3746 0.3122 0.5348 0.4954 0.5554
D-RISE [7] 0.6756 0.0814 0.7666 0.1570 0.8396 0.2987 0.8996
ODAM [14] 0.6067 0.0787 0.7218 0.1860 0.7890 0.3188 0.9934
Ours 0.7991 0.0489 0.8678 0.1065 0.8968 0.2841 0.9987

YOLO V3 [8]
(One-stage)

Grad-CAM [9] 0.6283 0.2867 0.7961 0.4573 0.7271 0.5234 0.7268
D-RISE [7] 0.7524 0.1889 0.8747 0.3629 0.8213 0.4587 0.8816
ODAM [14] 0.7329 0.2766 0.8943 0.4707 0.7936 0.5283 0.9838
Ours 0.8674 0.1407 0.9490 0.3008 0.8984 0.3814 0.9900

FCOS [13]
(One-stage)

Grad-CAM [9] 0.2742 0.1417 0.3439 0.1845 0.6858 0.6176 0.5249
D-RISE [7] 0.4421 0.0570 0.4968 0.1078 0.8578 0.3729 0.9193
ODAM [14] 0.4266 0.0497 0.4742 0.0853 0.8713 0.4212 0.9935
Ours 0.5746 0.0414 0.6301 0.0815 0.8900 0.3698 0.9980

SSD [5]
(One-stage)

Grad-CAM [9] 0.3869 0.1466 0.4977 0.2022 0.6796 0.5366 0.7700
D-RISE [7] 0.4882 0.0616 0.5722 0.0979 0.7852 0.4497 0.9243
ODAM [14] 0.5117 0.0913 0.6072 0.1416 0.7900 0.4801 0.9778
Ours 0.6891 0.0483 0.7594 0.0835 0.8700 0.4366 0.9941

Similar, for Collaboration score (Eq. 3), according to
the Taylor decomposition [6], we can locally approximate
fcls (V \ (SA + α)) = fcls (V \ SA) − ∇fcls (V \ SA) · α
and freg (V \ (SA + α)) = freg (V \ SA)−∇freg (V \ SA)·
α. The model output can be viewed as a negative gain pro-
cess, i.e., freg (V \ (SA + α)) = b− b∗. Assuming that the
searched α is valid, i.e., ∇freg > 0 and ∇fcls > 0. We have:

scolla.(SA + α, btarget,c)− scolla.(SA, btarget, c)

= max
bi∈freg(V \SA),sc,i∈fcls(V \SA)

IoU(btarget, bi) · sc,i

− max
bi∈freg(V \(SA+α)),sc,i∈fcls(V \(SA+α))

IoU(btarget, bi) · sc,i

=1− scolla.(SA, btarget, c)

−min(1− scolla.(SA, btarget, c), max
bi∈b∗,sc,i∈s∗

c

IoU(btarget, bi) · sc,i)

=max(0, max
bi∈b∗,sc,i∈s∗

c

∇freg (V \ SA) · ∇fcls (V \ SA) · α2)

≥0,
(S5)

the collaboration score satisfies the monotonic non-negative
property in the process of maximizing the marginal effect.
Since SA ⊆ SB ⊆ V , more candidate boxes will be deleted,
thus, b∗A > b∗B , and ∇freg (V \ SA) > ∇freg (V \ SB).
Since only a small number of candidate boxes b∗ are re-
moved, ∇fcls(SA) ·α can be regarded as a tiny constant and
can be ignored. Combining Eq. S5, we have:

scolla.(SA + α, btarget,c)− scolla.(SA, btarget, c) >

scolla.(SB + α, btarget,c)− scolla.(SB , btarget, c).
(S6)

We can prove that both the Clue Score and Collabora-
tion Score satisfy submodularity under certain conditions.
Since any linear combination of submodular functions is it-
self submodular [2], we have:

F (SA ∪ {α})−F (SA) ≥ F (SB ∪ {α})−F (SB) ,
(S7)

and we can prove that Eq. 4 satisfies the submodular prop-
erties.

From the above derivation, we find that the gain or neg-
ative gain condition of bounding boxes b∗ is critical for sat-
isfying submodularity. Thus, the detection model f , which
can return relevant confidence candidate boxes for any com-
bination of input sub-regions, is theoretically guaranteed to
meet the required boundaries. Most detection models fulfill
this condition by not filtering out low-confidence candidate
boxes. However, multimodal large language model-based
detection models, which may not directly output candidate
boxes or confidence scores, do not fully satisfy these as-
sumptions. This highlights room for improvement in ex-
plaining the results of such models.

B. Faithfulness in Traditional Detectors
We also validated the effectiveness of our interpretation
method on traditional object detectors, including the two-
stage detector Mask R-CNN (ResNet-50 backbone with
Feature Pyramid Networks) [4] and the one-stage detec-
tors YOLO v3 (DarkNet-53 backbone) [8], FCOS (ResNet-
50 backbone with Feature Pyramid Networks) [13], and
SSD [5]. We use the pre-trained models provided by
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Figure S1. Visualization results of four object detectors for interpreting object detection task on the MS COCO dataset.

MMDetection 3.3.01 for interpretation. Following the eval-
uation settings of D-RISE [7] and ODAM [14], we selected
samples for interpretation that were correctly predicted by
the model with high confidence and precise localization.

Table S1 presents the results. We observe that, when
considering both location and classification faithfulness
metrics, D-RISE emphasizes location information more
than ODAM, resulting in better performance in this as-
pect. In contrast, ODAM demonstrates higher faithfulness
to classification scores on certain detectors, such as SSD
and YOLO v3. Notably, ODAM outperforms D-RISE in
the location metric Point Game. While ODAM and D-
RISE have specific advantages across different metrics and
models, our method consistently achieves state-of-the-art
results across all models and metrics. On Mask R-CNN,
our method outperforms D-RISE by 18.3% in Insertion and
31.7% in ODAM, as well as by 39.9% and 37.9% in Dele-
tion. On YOLO V3, our method outperforms D-RISE by
15.3% in Insertion and 18.4% in ODAM and by 25.5% and

1https://github.com/open-mmlab/mmdetection

49.1% in Deletion. On FCOS, our method surpasses D-
RISE by 30.0% in Insertion and 34.7% in ODAM, and by
27.4% and 16.7% in Deletion. On SSD, our method outper-
forms D-RISE by 41.2% in Insertion and 17.7% in ODAM,
and by 21.6% and 47.1% in Deletion.

From the above results, we found that our method re-
mains highly interpretable even on traditional object de-
tection models, demonstrating its versatility in explaining
both modern multimodal foundation models and traditional
smaller detectors. Figure S1 presents the visualization re-
sults, demonstrating that our method maintains high faith-
fulness in explaining traditional detectors.

C. Semantic Interpretations
We apply our interpretation method to the visual ground-
ing task using Grounding DINO, focusing on explaining the
same location corresponding to different text expressions.
As shown in Figure S2, although the important regions are
similar when grounding the same object with different texts,
the saliency map reveals distinct differences. For the inter-

3
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Figure S2. Interpretation of the same instance with different text
expressions.

pretation of the text ‘blue guy’, the person wearing white
clothes contributes less than the background region. In con-
trast, the interpretation of the ‘right person’ highlights only
the correct object.

D. Computational complexity

Solving Eq. 1 is an NP-hard problem, and the time com-
plexity is O(2|V |). By employing a greedy search algo-
rithm, we sort all subregions, resulting in a total number
of inferences equal to 1

2 |V |2 + 1
2 |V |, the algorithm’s time

complexity is O( 12 |V |2 + 1
2 |V |).

E. Statistical Analysis

We utilize Grounding DINO’s correct prediction attribu-
tion map and compute the numerical improvements of
our method over the baseline for each sample. We then
visualize the overall distribution of these improvements.
As shown in Figure S3, the distributions on the MS
COCO, RefCOCO, and LVIS V1 datasets illustrate that our
method outperforms the baseline on the majority of sam-
ples, demonstrating its superior performance.

F. Evaluation Metrics

In this paper, we adopt 6 faithfulness metrics. Given the
object location box information, btarget, and the target cat-
egory, c, that requires explanation. In this section we will
formulate a description of faithfulness metrics.

For the Deletion AUC score [7], which quantifies the
reduction in the model’s ability of both location and clas-
sification when important regions are replaced with a base-
line value. A sharp decline in performance indicates that
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Figure S3. Distribution of our improvements over the baseline per
sample on MS COCO, RefCOCO, and LVIS V1 datasets.

the explanation method effectively identifies the key vari-
ables influencing the decision. Let x[xT=x0] denote the in-
put where the T most important variables, according to the
attribution map, are set to the baseline value x0 = 0. Given
a set T = {T0, T1, · · · , Tn}, where T0 = 0 and Tn is the
input size of x, this set represents the selected numbers of
the most important regions. Then, the Deletion AUC score
is given by:

Del. =

n∑
i=1

(
sclue(x[xTi

=x0]) + sclue(x[xTi−1
=x0])

)
· (Ti − Ti−1)

2Tn
,

(S8)
the lower this metric, the better the attribution performance.

For the Insertion AUC score [7], which quantifies the
increase in the model’s output as important regions are pro-
gressively revealed. This metric is defined as follows:

Ins. =

n∑
i=1

(
sclue(x[xT̄i

=x0]) + sclue(x[xT̄i−1
=x0])

)
· (Ti − Ti−1)

2Tn
,

(S9)
where x[xT̄=x0] denotes the input where elements not be-
longing to the set T are set to the baseline value x0 = 0. The
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higher this metric, the better the attribution performance.
For the Deletion AUC score (class), we first define scls,

whose goal is to select the category score of the bounding
box that is close to the explanation target:

scls(S) = arg max
sc,i∈f(S)

IoU(btarget, bi) · sc,i, (S10)

then,

Del. (class) =

n∑
i=1

(
scls(x[xTi

=x0]) + scls(x[xTi−1
=x0])

)
· (Ti − Ti−1)

2Tn
.

(S11)
Similar, for the Insertion AUC score (class),

Ins. (class) =

n∑
i=1

(
scls(x[xT̄i

=x0]) + scls(x[xT̄i−1
=x0])

)
· (Ti − Ti−1)

2Tn
.

(S12)
For the Deletion AUC score (IoU), we first define siou,

whose goal is to select the IoU score of the bounding box
that is close to the explanation target:

siou(S) = IoU
(
arg max

bi∈f(S)
IoU(btarget, bi) · sc,i, btarget

)
,

(S13)
then,

Del. (IoU) =

n∑
i=1

(
siou(x[xTi

=x0]) + siou(x[xTi−1
=x0])

)
· (Ti − Ti−1)

2Tn
.

(S14)
Similar, for the Insertion AUC score (IoU),

Ins. (IoU) =

n∑
i=1

(
siou(x[xT̄i

=x0]) + siou(x[xT̄i−1
=x0])

)
· (Ti − Ti−1)

2Tn
.

(S15)

G. Limitation and Discussion
Limitations: The main limitation of our method is that (i)
Sparse division impacts attribution faithfulness. When sub-
regions mix positively and negatively contributing regions,
attribution direction may be distorted. Refining sparse di-
vision strategies for different scenarios remains a region for
improvement. (ii) A large number of sub-regions poses a
challenge for attribution time, as greedy search remains
computationally demanding. Enhancing search efficiency
or integrating external knowledge to filter unnecessary sub-
regions can help accelerate attribution.

Why object score decrease sometimes: This phe-
nomenon occurs because not all sub-regions contribute pos-
itively to the model’s decision, underscoring a key advan-
tage of our method: maximizing the decision response with
fewest sub-regions. Exposing additional sub-regions may
lower the object score, revealing that the remaining regions
negatively impact the decision. This effect is more pro-
nounced in incorrect decisions, where certain regions may
cause errors. If such regions are excluded, the decision
could potentially be corrected.

Future outlook: Our method primarily focuses on in-
terpretable attribution at the input level of the model. There
remains significant potential for attributing internal param-
eters, particularly in transformer-based models. This ap-
proach could extend to explaining additional tasks, such as
instance segmentation. Future research could explore im-
proving models based on this mechanism by identifying and
correcting problematic parameters.

H. Actual Application

Attribution has numerous potential applications. Beyond
aiding human understanding of model decisions, it can also
help identify the causes of errors, enabling the analysis
of potential hallucinations [1]. Some studies explore us-
ing attribution to guide model training and enhance perfor-
mance [3], while others investigate detecting anomaly de-
cisions by assessing whether the attribution distribution de-
viates from expected patterns during deployment [10, 11].
These diverse applications highlight the significant research
value of attribution methods.

I. Additional Ablation

Ablation on thresholding the confidence scores: We dis-
cuss the impact of applying a confidence score threshold
versus using all model predictions regardless of their confi-
dence scores. As shown in Table S2, applying a threshold to
filter boxes leads to a consistent decline in all faithfulness
metrics as the threshold increases. Therefore, we recom-
mend avoiding the use of thresholds.

Ablation on using confidence score: We discuss the im-
pact of whether or not to use the Confidence score on the
interpretation. In Table S3, without conf. score, both the
attribution faithfulness for classes and the location will de-
crease, leading to imprecise attribution.

J. More Visualization

We present additional attribution visualizations for samples
correctly predicted by Grounding DINO, including results
from the MS COCO dataset to explain the object detection
task (Figure S4) and from the RefCOCO dataset to illustrate
the visual grounding task (Figure S5).
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Table S2. Ablation on the confidence score threshold for Grounding DINO using the MS COCO validation set.

Threshold Faithfulness Metrics
Ins. (↑) Del. (↓) Ins. (class) (↑) Del. (class) (↓) Ins. (IoU) (↑) Del. (IoU) (↓) Ave. high. score (↑)

None 0.5459 0.0375 0.6204 0.0882 0.8581 0.3300 0.6873
0.1 0.5267 0.0396 0.6007 0.0896 0.8498 0.3321 0.6660
0.2 0.5165 0.0423 0.5928 0.0916 0.8373 0.3408 0.6625

0.35 0.4862 0.0641 0.5638 0.1098 0.8023 0.3825 0.6519

Table S3. Ablation on the confidence score for Grounding DINO using the MS COCO validation set.

Submodular function Faithfulness Metrics
Ins. (↑) Del. (↓) Ins. (class) (↑) Del. (class)(↓) Ins. (IoU) (↑) Del. (IoU)(↓) Ave. high. score (↑)

w/ conf. score 0.5459 0.0375 0.6204 0.0882 0.8581 0.3300 0.6873
w/o conf. score 0.3725 0.0917 0.4410 0.1622 0.8051 0.3421 0.5928
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Figure S4. More visualization results of Grounding DINO for interpreting object detection task on the MS COCO dataset.
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Figure S5. More visualization results of Grounding DINO for interpreting visual grounding task on the RefCOCO dataset.
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