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Supplementary Material

In the supplementary materials, we provide:
• Mathematical Proofs (Section A): We present the math-

ematical proofs for the equations and properties of our
proposed algorithm, as discussed in the main text.

• Datasets and Experimental Setup (Section B): This sec-
tion details the datasets employed in our experiments, the
LoRA training configuration, and the key settings of the
baseline implementations.

• Ablation Studies (Section C): We report the results of
ablation studies, demonstrating the necessity of the three
mechanisms integrated into our algorithm.

• Experimental Results (Section D): A detailed presenta-
tion of the experimental results is provided in this section.

• Workflow and Analysis (Section E): Finally, we illus-
trate the complete workflow of IterIS and conduct an anal-
ysis of the efficiency and limitations of our approach.

A. Detailed Mathematical Derivation

A.1. Linear Merging

Consider the following optimization problem:

W ∗ = argmin
W

EX [

N∑
i=1

λi∥W T
i X i −W TX i∥2F ] (9)

where EX [·] denotes the expectation with respect to X (
X=(X1, . . . ,XN )), and λi is a constant. and ∥ · ∥F repre-
sents the Frobenius norm. Assuming each X i follows an
isotropic distribution and X 1. . .XN are mutually indepen-
dent, we have:

EX [∥W T
i Xi−W TXi∥2F ] =

1

D
EXi [∥Xi∥2F ]∥Wi−W ∥2F (10)

where D is the dimension of each Xi. we have the following
based on Eq. 10:
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This expression admits a closed-form solution.

W ∗ =

N∑
i=1

λ̃iWi, λ̃i =
λiEXi [∥Xi∥2F ]

ΣN
j=1λjEXj [∥Xj∥2F ]

(14)

A.2. Real-distribution-based Merging
We can derive the following from the linear merging derivation in
Subsection A.1, and set each λi to 1:

W ∗ = argmin
W

N∑
i=1

EX i [∥W
T
i X i −W TX i∥2F ]. (15)

To compute each expectation in Eq. 15, we can sample from the
distribution of X i, and using the law of large numbers, approxi-
mate the expectation as:

EX i [∥W
T
i X i −W TX i∥2F ] ≈

1

S

S∑
s=1

∥W T
i xis −W Txis∥2F

(16)

=
1

S
∥W T

i Xi −W TXi∥2F
(17)

where xis ∈ Sample(X i) and Xi = (xi1,xi2, . . . ,xiS). There-
fore, we can reformulate the optimization objective based on the
real distribution:

W ∗ = argmin
W

N∑
i=1

∥W T
i Xi −W TXi∥2F . (18)

In fact, this optimization problem can be viewed as a linear re-
gression problem, where X = [X1,X2, · · · ,XN ]T is mapped
to Y = [W T

1 X1,W
T
2 X2, · · · ,W T

NXN ]T . Thus, the problem
has a closed-form solution:

W ∗ = (XTX)−1XTY (19)

= (

N∑
i=1

XiX
T
i )−1(

N∑
i=1

XiX
T
i Wi) (20)

Similarly, for the optimization problem corresponding to our al-
gorithm in Eq. 5 of Section 3, we can also obtain its solution.

A.3. Maximum Iteration Limit for IterIS
Starting with the topology of the generative model, we construct
the gradient computation graph G∇, which is a directed acyclic
graph (DAG). To create the new graph GM , we extract all nodes
corresponding to the input features for each LoRA. We follow a
specific rule to construct GM : if there is a directed path from node
A to node B in G∇, we establish a directed edge from A to B
in GM . The resulting graph GM is also a directed acyclic graph.
We will demonstrate that the length of the longest directed path
in GM , originating from any input node (of which there may be
multiple), minus one, provides the maximum number of iterations
required for the IterIS’s convergence.
Proof: Let s denote the length of the longest path in GM orig-
inating from the input node Oin. We define a function g :
v(GM ) \ {Oin} → {1, 2, . . . , s}, where g(A) indicates the length
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Figure 7. Illustration of the maximum iteration count in graph
GM . For a transformer composed of one encoder and one decoder,
the abstracted GM after LoRA fine-tuning on the k and v matrices
allows IterIS to converge within two iterations.

B-1 B-2 B-3 B-4 RougeL CIDEr ACCPOS ACCNEG

LoRA1 0.570 0.369 0.241 0.159 0.426 0.808 0.848 0.018

LoRA2 0.550 0.354 0.234 0.157 0.414 0.811 0.138 0.867

Table 4. Performance of style-specific LoRAs for multi-style
caption on vision-language model.

of the longest path from Oin to node A. We will use mathemati-
cal induction to demonstrate that at the k-th iteration, all nodes in
g−1({1, 2, . . . , k + 1}) and their corresponding updated matrices
remain unchanged in subsequent iterations. This observation relies
on the fact that if the unified adapter’s input X̃i remains constant
during iterations, the computed Wi will also remain constant.

1. Base Case ( k = 0 ): For the initial iteration, it is clear that
g−1(1) is non-empty and contains only nodes with Oin as their
sole parent. Therefore, g−1(1) is entirely dependent on the input,
indicating that these nodes and their corresponding matrices will
remain unchanged in subsequent iterations.

2. Inductive Step (Assume true for k = k0): Assume that at
iteration k = k0, all nodes in g−1({1, 2, . . . , k0 + 1}) and their
associated matrices remain constant. Since each node in g−1(k0+
2) has its parent nodes contained within g−1({1, 2, . . . , k0+1}), it
follows that the nodes in g−1(k0+2) are reliant on the unchanged
nodes in g−1({1, 2, . . . , k0 + 1}). Consequently, these nodes and
their corresponding updated matrices will also remain constant in
subsequent iterations.

By this reasoning, when k = s − 1, it holds that
g−1({1, 2, . . . , s}) = v(GM ) \ {Oin} will remain unchanged
in subsequent iterations. Thus, we prove and compute the upper
bound on the maximum number of iterations required for the con-
vergence of the IterIS algorithm.

For a transformer model consisting of L layers of encoders and
L layers of decoders, if we apply LoRA fine-tuning to the k and v
matrices within the attention modules, our algorithm will converge
in no more than 3L − 1 iterations. As illustrated in Figure 7, the
red-marked path has a length of 3, indicating that the algorithm
converges after two iterations.

COLA RTE SST2 MNLI QQP QNLI MRPC

0.532 0.812 0.946 0.855 0.858 0.920 0.831

Table 5. Performance of task-specific LoRAs for multi-task in-
tegration on large language model.

TEC Emoint ISEAR EC

0.669 0.828 0.767 0.947

Table 6. Performance of task-specific LoRAs for in-domain
task integration on large language model.

B. Detailed Experimental Setting
B.1. Datasets
DreamBooth [19]. The DreamBooth dataset consists of 30 sub-
jects across 15 different classes. Among these, 9 are live subjects
(dogs and cats), while the remaining 21 are objects. Each subject
is represented by a variable number of images (ranging from 4 to
6), typically captured under diverse conditions, in various environ-
ments, and from different angles.
Customconcept101 [11]. The customconcept101 dataset, intro-
duced by custom diffusion [11], comprises 101 concepts, each
represented by 3 to 15 images, designed to evaluate model cus-
tomization methods.
SentiCap [13]. The SentiCap dataset comprises thousands of im-
ages with sentiment-labeled captions. The POS subset includes
2,873 positive sentences paired with 998 images for training and
2,019 sentences paired with 673 images for testing. The NEG sub-
set contains 2,468 negative sentences with 997 images for training
and 1,509 sentences with 503 images for testing.
GLUE [23]. The GLUE dataset serves as a benchmark for evaluat-
ing natural language understanding models. It encompasses mul-
tiple tasks, including sentiment analysis, textual entailment, and
sentence similarity. For our evaluation, we utilize the SST-2 [21],
MRPC [3], MNLI [25], QNLI [17], RTE [7], COLA [24], and
QQP datasets. Evaluations are conducted on the official develop-
ment sets, as the test labels remain hidden.
Emotion. For emotion classification, we use the preprocessed
datasets provided by Oberlander & Klinger [1], specifically
TEC [14], ISEAR [20], Emoint [15], and Emotion-Cause (EC) [6],
for domain-specific training. All four datasets include the emotion
classes of anger, fear, joy, and sadness in their label space, encom-
passing various scenarios and sources. In our experiments, each
dataset is randomly divided into training and testing sets, with five
parts for training and one part for testing.
FlickrStyle10K [5]. The FlickrStyle10K dataset is derived from
the Flickr30K [16] image caption dataset. It originally contained
10,000 image-caption pairs with stylized captions in humorous
and romantic styles. However, only 7,000 pairs from the official
training set are currently publicly available.

B.2. LoRA Training
LoRAs for Multi-concept Customization. We applied the
widely-used DreamBooth-LoRA [19] tuning to generate multiple
LoRAs for stable diffusion v1.5 [18], with each LoRA dedicated
to a single new concept. The LoRA rank was set to 32, and LoRA



Iteration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ACCmean 0.674 0.919 0.681 0.862 0.729 0.806 0.789 0.788 0.786 0.784 0.784 0.784 0.784 0.784 0.784

CIDErmean 0.785 0.381 0.793 0.651 0.798 0.794 0.791 0.770 0.789 0.790 0.791 0.790 0.790 0.790 0.790

Scoreaver 0.730 0.650 0.737 0.756 0.764 0.800 0.790 0.779 0.788 0.787 0.788 0.787 0.787 0.787 0.787

Table 7. Performance across different maximum iterations.
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Figure 8. Performance across different maximum iterations

alpha was set to 1. During the textual inversion phase, we used
a learning rate of 5 × 10−4, with each new concept represented
by a single learnable token, all initialized uniformly. In the sub-
sequent fine-tuning phase, the UNet and text encoder were trained
with learning rates of 10−4 and 10−5, respectively, while the tex-
tual inversion learning rate was maintained at 10−4. Both phases
involved training for 800 steps, with a batch size of 1 and gradient
accumulation steps set to 4.
LoRAs for Multi-style Caption. We applied LoRA tuning to fine-
tune the BLIP-image-caption-base [12]. LoRAs were integrated
into all self-attention modules within the text encoder, specifically
targeting the q, v, and k matrices [22]. The LoRA rank was set
to 32, with α set to 32, and a dropout rate of 0.05. The training
was conducted with a batch size of 8 for a maximum of 15 epochs,
using an initial learning rate of 3e-5. The AdamW [10] optimizer
was employed for optimization. Table 4 summarizes the key met-
rics of multiple LoRAs trained in this part.
LoRAs for Multiple NLP tasks Integration. 1) In-domain task
integration: We fine-tuned FLAN-t5-large [2] using LoRA tun-
ing, targeting the q and v matrices of all attention layers [22].
The learning rate was set to 5e-5, with a training duration of 10
epochs and a batch size of 12. A warm-up phase [8] of 100 steps
was applied. Optimization was performed using the AdamW op-
timizer [10], with a weight decay of 0.001. 2) Multi-task integra-
tion: We fine-tuned FLAN-T5-base [2] using LoRA on the q and
v matrices across all attention layers [22]. The learning rate was
set to either 5 × 10−5 or 1 × 10−5, with training durations of 8
or 10 epochs and batch sizes of 12 or 16. A 100-step warm-up
phase [8] was applied. The AdamW optimizer [10] was used with
a weight decay of 0.001. For further detailed training configura-
tions for each subset, please refer to the forthcoming release of
our code. Table 5 and Table 6 summarize the key metrics of the
LoRAs trained in this part.

B-1 B-2 B-3 B-4 Rough-L CIDEr

POS (Ours w/o Reg) 0.480 0.291 0.180 0.112 0.368 0.534
POS (Ours w/ Reg) 0.561 0.359 0.232 0.151 0.420 0.794

NEG (Ours w/o Reg) 0.356 0.206 0.127 0.079 0.334 0.476
NEG (Ours w/ Reg) 0.540 0.348 0.230 0.153 0.406 0.794

Table 8. Performance comparison of our algorithm with and
without the regularization term for vision-language model.
The bold numbers highlight the best performance.

B.3. Baseline Training Details
Textual Inversion [4]. We employed uniformly initialized learn-
able tokens with a batch size of 1 and set the gradient accumula-
tion steps to 4. The learning rate was configured to 5× 10−4, and
the training was carried out over a total of 800 steps. Each new
concept was represented as “[adj n] n,” where “[adj n]” denoted a
learnable token. For instance, when introducing the new concept
“cat,” we represented the new concept as “[adj cat] cat”.
Custom Diffusion [11]. We utilized the official implementation
of custom diffusion. To ensure a fair comparison, we adopted its
optimization method as the baseline. The number of DDPM steps
was set to 200, and the unconditional guidance scale was set to 6.
Linear Merging [26]. We performed linear merging using LoRAs
with identical weights (e.g., average merging).
RegMean [9]. We utilized the official implementation of Reg-
Mean, with modifications to the interface. In our experiments, we
reproduced RegMean by adopting its official regularization set-
tings, with the regularization coefficient α set to 0.1. Following
the recommendations in the original paper, we set the number of
inference samples to 100–200, with a batch size of 16. In cases
where the dataset contained fewer than the recommended number,
we used all available data. All other hyperparameters and LoRAs
were kept consistent with those in our method.

C. Ablation Study of IterIS
Influence on Maximum Iteration. As shown in Figure 8 and
Table 7, we evaluated the impact of varying maximum iterations
in IterIS on vision-language model. Mean ACC, CIDEr, and
scoreaver (defined as (ACCmean + CIDErmean) / 2) were com-
puted on the validation sets of the POS and NEG datasets. When
limited to 4 or fewer iterations, IterIS exhibits notable instability,
starting with a low scoreaver that progressively improves. Peak
performance is observed at 5 iterations, beyond which a slight de-
cline suggests potential overfitting. Performance stabilizes after
11 iterations, aligning with our theoretical expectations.
Influence on Regularization Term. Using 50 samples for infer-
ence, we evaluated the effect of the introduced regularization term
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Figure 9. Additional qualitative results for multi-concept customization. Target images represent individual concepts used in the
compositions. (a) Examples of pairwise compositions generated by our method. (b) Examples of individual concepts generated by IterIS.



a beautiful girl in a 
black coat and white 
scarf on a sunny day

an amazing picture of a 
red double decker bus 
traveling through the 
streets of london

a nice room with two 
sinks and a toilet sitting 
on a blue tiled floor

a cute teddy bear sitting 
on a bed with a 
beautiful wallpapered in 
the background

a sad woman with long 
hair standing in front of 
trees waiting to die, 
wearing a black jacket 
and white scarf

a red double decker bus 
traveling down a lonely 
city street

a dirty bathroom with 
two sinks and a bathtub 
in the middle of the 
dirty water

a teddy bear sitting on a 
bed next to a dirty wall

an interesting clock on 
the side of a brick 
building

this is a great picture of 
an elephant that is 
walking in front of a 
beautiful tree

a cute cat standing on a 
table next to a piece of 
cake and a cal in front 
of an apple

a happy man in a white 
shirt and green pants 
with his fisting hand in 
the air

a clock mounted on the 
side of an ugly building 
with a broken wall in 
the middle of it

an elephant standing in 
the dirt with its trunk up 
in front of it's head

a dead cat standing on a 
table next to a piece of 
tin with a sandwich and 
a phone

a fat man in a white 
shirt and green pants is 
raising his fist

POS NEG POS NEG

Figure 10. More examples of style caption generated by our algorithm.

Composition (MRPC, SST2) (COLA, MNLI) (RTE, MRPC)

Ours w/o Reg (0.272, 0.177) (0.0, 0.0) (0.671, 0.667)
Ours w/ Reg (0.824, 0.951) (0.299, 0.780) (0.805, 0.814)

Table 9. Performance comparison of our algorithm with and
without the regularization term for LLM. The first dataset pair
consists of MRPC and SST2, and so on. The bold numbers indi-
cate the best performance within each dataset pair.

Composition (COLA, MNLI) (MNLI, SST2) (COLA, SST2)

Ours w/o Weights (0.271, 0.728) (0.761, 0.945) (0.356, 0.943)
Ours w/ Weights (0.299, 0.780) (0.764, 0.945) (0.360, 0.943)

Table 10. Performance comparison of our algorithm with and
without adaptive weights for LLM. The first dataset pair consists
of COLA and MNLI, and so on. The bold numbers indicate the
best performance within each dataset pair.

on the performance of IterIS for both the vision-language model
and the large language model. As demonstrated in Table 8 and
Table 9, incorporating the regularization term results in substan-
tial performance improvements, highlighting its pivotal role in en-
hancing the effectiveness of IterIS.

Influence on Adaptive Weights. We assessed the impact of adap-
tive weights on algorithm performance, as summarized in Ta-
ble 10. The results demonstrate that adaptive weights can enhance
algorithm performance to a certain extent. Moreover, we observe
that when there are greater discrepancies between different tasks,
the application of our proposed adaptive weights leads to a more
noticeable improvement (e.g., COLA and MNLI).

Style Method B-1 B-2 B-3 B-4 Cider ACC

POS
RegMean 0.576 0.368 0.239 0.156 0.801 0.624
Linear 0.561 0.357 0.230 0.151 0.771 0.522
IterIS 0.561 0.359 0.232 0.151 0.794 0.830

NEG
RegMean 0.540 0.341 0.223 0.144 0.779 0.692
Linear 0.509 0.319 0.206 0.133 0.733 0.557
IterIS 0.540 0.348 0.230 0.153 0.794 0.781

HUM
RegMean 0.303 0.174 0.103 0.061 0.528 -
Linear 0.281 0.161 0.095 0.055 0.504 -
IterIS 0.300 0.174 0.103 0.060 0.530 -

ROM
RegMean 0.307 0.172 0.101 0.061 0.523 -
Linear 0.266 0.151 0.054 0.047 0.487 -
IterIS 0.308 0.172 0.101 0.062 0.524 -

Table 11. Detailed performance comparison for multi-style
caption generation includes two combinations: (1) “positive”
(POS) + “negative” (NEG), and (2) “humor” (HUM) + “romance”
(ROM). The bold values highlight the best performance.

D. More Results

More Results on Text-to-Image Diffusion. Figure 9(a) show-
cases additional combinations of pairwise concepts from our ex-
periments, while Figure 9(b) illustrates the individual concepts
generated by the composed LoRAs. Our method exhibits robust
performance across a wide range of multi-concept combinations.
More Results on V&L Model. As shown in Figure 6 of Section 4,
we provide additional examples of positive and negative captions
generated by our algorithm. A detailed version of Table 2 of Sec-
tion 4 from the main text is presented in Table 11. Additionally,
we conducted experiments on FlickrStyle10K [5], exploring com-
binations of two other distinct styles. The results are also included



Score1 Score2 Score3 Score4

Composition IterIS RegMean Linear IterIS RegMean Linear IterIS RegMean Linear IterIS RegMean Linear

Emoint/EC 0.810 0.808 0.784 0.938 0.922 0.912 - - - - - -
Emoint/TEC 0.807 0.758 0.731 0.551 0.544 0.474 - - - - - -
Emoint/ISEAR 0.811 0.786 0.733 0.665 0.650 0.603 - - - - - -
EC/TEC 0.945 0.926 0.881 0.603 0.630 0.592 - - - - - -
EC/ISEAR 0.953 0.938 0.900 0.709 0.719 0.679 - - - - - -
TEC/ISEAR 0.574 0.592 0.526 0.710 0.661 0.631 - - - - - -
Emoint/EC/TEC 0.782 0.753 0.727 0.942 0.923 0.877 0.540 0.510 0.460 - - -
Emoint/EC/ISEAR 0.795 0.774 0.720 0.935 0.926 0.887 0.670 0.641 0.593 - - -
Emoint/TEC/ISEAR 0.786 0.721 0.683 0.500 0.499 0.455 0.646 0.607 0.593 - - -
EC/TEC/ISEAR 0.950 0.910 0.857 0.552 0.555 0.486 0.683 0.649 0.614 - - -
Emoint/EC/TEC/ISEAR 0.776 0.714 0.688 0.935 0.901 0.873 0.508 0.481 0.445 0.657 0.607 0.590

Table 12. Performance of all possible compositions in in-domain task integration. Scorei denotes the performance metric for the i-th
task within the composition. The bold values highlight the best performance.

Score1 Score2

Composition IterIS RegMean Linear IterIS RegMean Linear

MNLI/RTE 0.831 0.803 0.751 0.794 0.787 0.776
MNLI/COLA 0.780 0.755 0.765 0.299 0.279 0.383
MNLI/SST2 0.764 0.747 0.645 0.945 0.945 0.942
MNLI/QQP 0.821 0.813 0.687 0.855 0.853 0.842
MNLI/QNLI 0.821 0.806 0.797 0.916 0.914 0.905
MNLI/MRPC 0.825 0.816 0.744 0.821 0.792 0.772
RTE/COLA 0.787 0.783 0.733 0.311 0.307 0.388
RTE/SST2 0.819 0.809 0.773 0.946 0.948 0.943
RTE/QQP 0.816 0.812 0.819 0.856 0.856 0.853
RTE/QNLI 0.805 0.805 0.812 0.919 0.920 0.913
RTE/MRPC 0.805 0.812 0.805 0.814 0.801 0.757
COLA/SST2 0.360 0.291 0.233 0.943 0.938 0.891
COLA/QQP 0.386 0.332 0.397 0.839 0.831 0.734
COLA/QNLI 0.297 0.305 0.346 0.906 0.904 0.818
COLA/MRPC 0.341 0.307 0.383 0.811 0.816 0.765
SST2/QQP 0.947 0.947 0.936 0.855 0.854 0.839
SST2/QNLI 0.943 0.943 0.943 0.920 0.916 0.882
SST2/MRPC 0.951 0.947 0.939 0.824 0.809 0.794
QQP/QNLI 0.856 0.856 0.846 0.920 0.920 0.915
QQP/MRPC 0.855 0.854 0.846 0.816 0.814 0.801
QNLI/MRPC 0.922 0.920 0.907 0.821 0.821 0.797

Table 13. Performance of all pairwise compositions in multi-
task integration. Scorei denotes the performance metric for the
i-th task within the composition. The bold values highlight the
best performance.

in Table 11. Due to the subjective nature of evaluating humor and
romance, as well as the lack of the open test set, we didn’t quan-
tify humor(romance)-specific metrics. As a result, aside from the
CIDEr score, the advantages of our algorithm for this style combi-
nation are less evident.

Composition (MRPC, SST2) (SST2, QQP) (QQP, MRPC)

Task arithmetic (0.806, 0.937) (0.937, 0.841) (0.845, 0.811)
Ties merging (0.765, 0.943) (0.944, 0.823) (0.846, 0.806)
Hyper-linear (0.809, 0.933) (0.931, 0.849) (0.846, 0.801)
IterIS (Ours) (0.824, 0.951) (0.947, 0.855) (0.855, 0.816)

Table 14. Performance for multi-task integration for additional
three baselines.
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Figure 11. The workflow diagram of our algorithm.

More Results on LLM. A detailed version of Table 3 in Section,
as discussed in the main text, is provided for reference in this
part. Table 12 summarizes the experimental results of 11 com-
binations for in-domain task integration, while Table 13 presents
the results of 21 combinations for multi-task integration. Our pro-
posed method outperforms both RegMean and linear merging in
the majority of cases, highlighting its robustness and effectiveness.
Additionally, Table 14 shows the superiority of our method com-
pared to three extra baselines in the multi-task integration subset.

E. Others
Illustration of IterIS. To facilitate a better understanding of
IterIS, we present Figure 11, which effectively illustrates the layer-



wise characteristics and inference-solving process of our method.
Efficiency Analysis. IterIS ensures computation and memory ef-
ficiency through sample efficiency and limited iterations. In the
V&L experiments, we utilized 50 prompt-image pairs as infer-
ence samples and performed 6 iterations. For each layer, the total
computational cost for computing a single inner product matrix is
50 (sample) × 6 (iteration) = 300 one-dimensional tensor inner
products. However, that cost for RegMean is 1600 × 1 = 1600,
which is much higher than IterIS. Moreover, sample efficiency of
IterIS allows us to perform all computations without batching, en-
suring memory efficiency. Notably, all experiments for IterIS were
conducted using a single RTX 3090 GPU.
Detailed Analysis for the Regularization Term and Adaptive
Weights. 1) The regularization term prevents irreversible situa-
tions in solutions, which often occur in few-sample cases. In such
cases, at least one solution to the optimization objective in Eq.(5)
renders it zero. This means the output features in each layer of
the merged model are equal to those in the corresponding layer
of each individual model. Due to the limited number of infer-
ence samples, the risk of overfitting to these samples is high. No-
tably, we can infer that the optimal solution to Eq.(1) is close to
the linear solution based on Eq.(2). Applying identity matrices as
regularization terms aligns the solution more closely with the lin-
ear solution, enhancing robustness. However, diagonal matrices in
RegMean cannot achieve the same effect. 2) From a dimensional
analysis perspective, the scale of the adaptive weights corresponds
to that of ∥Xi∥−2

F . This neutralizes the scale of Xi in the opti-
mization objective (∥W T

i Xi−W T X̃i∥2F ), thereby ensuring that
the optimization objective remains unbiased to the scale of Xi.
Limitations. Similar to other LoRA merging methods, perfor-
mance degradation on individual tasks is inevitable when merg-
ing tasks of different types. This degradation becomes more pro-
nounced as the diversity of task types increases or when param-
eter conflicts arise. Furthermore, since our method does not in-
clude domain-specific enhancements for text-to-image diffusion,
it shares a limitation with custom diffusion—namely, the confu-
sion of object concepts.
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