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Supplementary Material

The appendix is organized as follows:
• In Sec. A1, we provide analysis following derivations

in Sec. 4.2. Similarly, we intend to provide an IND En-
tropy score bound from adversarial training.

• In Sec. A2, we present additional experimental results to
better illustrate the effectiveness of PRO.

• In Sec. A3, we introduce the implementation details in-
cluding hardware and hyperparameters.

In addition to the appendix, we have attached the code for
reference if more details are needed.

A1. Adversarial robustness of entropy score
We aim to show the relationship between adversarial robust-
ness to the lower bound of the perturbed IND entropy score
by demonstrating that perturbation has a limited effect on
attenuating IND entropy scores.

The entropy score for OOD detection is defined as the
negative Shannon entropy, aligning with the conventional
setting where higher scores indicate IND inputs:

gENT(x) = �H(f(x)) =
CX

i=1

pi(x) log pi(x) (A11)

The analysis follows the derivation for the MSP score
in Sec. 4.2. We begin by rewriting the negative prediction
entropy in terms of the MSP score and the probabilities of
the remaining classes:

� H(f(x + �)) (A12)

=
CX

i=1

pi(f(x + �)) log pi(f(x + �))

= pmax log pmax +
CX

j=2

pj log pj

> pmax log pmax + (C � 1)pa log pa,

where pa = (1 � pmax)/(C � 1) denotes the probability
evenly distributed among the remaining classes, leading to
the maximum prediction entropy given the dominant class
probability pmax. Next, we continue to rewrite the lower
bound of the entropy score:

) = pmax log pmax + (1 � pmax) log
1 � pmax

C � 1
(A13)

= pmax log pmax + (1 � pmax) log(1 � pmax)

+ pmax log(C � 1) � log(C � 1)

Denote h(p) = p log p + (1 � p) log(1 � p) + p log(C �
1)� log(C �1), this function is convex and non-decreasing
when c 2 [1/C, 1]. Apply Jensen’s inequality, and substi-
tute Eq. (10), we have 4:

E[�H(f(x))] � E[h(pmax)] � h(E[pmax]) � h(exp((�E)))
(A14)

A2. Additional results
Perturbation robustness analysis. We extend the analy-
sis of robustness differences using the metric of score shift.
Similar to Fig. 3, we evaluate score shifts under one-step
perturbations of varying magnitudes. In Fig. A1, the MSP
score shifts are shown for a CIFAR-10 model without ad-
versarial training. These results illustrate that OOD scores
are generally more susceptible to perturbations compared to
IND scores even without adversarial training. Additionally,
we analyze score shifts on ImageNet models in Fig. A2 and
Fig. A3. While a significant proportion of IND scores re-
main robust, forming a peak distribution near zero, a notable
portion of IND scores still experience significant decreases
under perturbation.
Score distribution shift. To provide further intuition on
how PRO reshapes the original score distribution, Fig. A4
compares the PRO-enhanced scores with original MSP and
ENT scores. As demonstrated in the plots, PRO effectively
reduces the score values for OOD inputs, resulting in a dis-
tribution shift toward lower values. However, we can ob-
serve that the shifts also happened within IND scores. These
shifts are particularly notable for the ImageNet model, es-
pecially MSP scores, limiting the enhancement from PRO.
OOD detection performance on ImageNet. Detailed
OOD detection performance metrics for ImageNet are
provided in Tab. A1. We present a default model and
three models trained with data augmentation procedures
PixMix [18], AugMix [17], and RegMixup [34]. We
focus on the comparison with softmax scores and other
gradient-based methods. The gradient-based method Grad-
Norm [20] shows significant performance degradation for
models trained with PixMix and AugMix, indicating that
gradients with respect to weights are highly sensitive to data
augmentations. ODIN exhibits reduced far-OOD perfor-
mance across all models compared to the MSP baseline.

In contrast, our proposed method, PRO, provides con-
sistent improvements over basic scores such as MSP and
Entropy, establishing PRO as the most competitive post-
hoc method for near-OOD detection among the compared

4We thank the anonymous reviewer for their helpful suggestion regard-
ing the derivation in Eq. (A14).



Figure A1. Distribution plots of MSP score shift introduced by
a bounded perturbation. It is tested on a robust CIFAR-10 model
without adversarial training.

baselines. However, the effect of PRO on Temperature-
scaled MSP and GEN is inconsistent across models. We
attribute this variability to the additional hyperparameters
in these methods, which increase dependence on the evalu-
ation set’s comprehensiveness.
Additional metrics on CIFAR-10. Tab. A2 provides the
OOD detection performance tested on the other three ro-
bust models as an extension to Tab. 1. Both LRR-CARD-
Deck and Binary-CARD-Deck have adopted an ensemble
of models, making most post-hoc methods perform simi-
larly to MSP baseline. We average the activations between
models in an ensemble to implement Scale, Ash, and React.
The binary model has an unconventional linear layer thus
we have not implemented activation-modification methods
on it. PRO has improved most averaged metrics of four
softmax scores on Augmix models, achieving leading per-
formance among baselines.
Metrics on different CIFAR-100 models. We present
OOD detection metrics on five different CIFAR-100 mod-
els in Tab. A3. For this analysis, we focus on origi-
nal softmax scores and ODIN as baselines to emphasize
the enhancements achieved by PRO across different mod-
els. For a detailed comparison with other representative
state-of-the-art methods, please refer to Tab. 2. PRO pro-
vides consistent improvements across different models, par-
ticularly for temperature-scaled confidence, entropy, and
GEN. As shown in the averaged metrics, PRO-MSP-T,
PRO-MSP-ENT, and PRO-GEN demonstrate leading per-
formance across most models.

A3. Implementation details & hyperparameter
All experiments presented in this work are conducted on a
workstation with four NVIDIA RTX 2080 Ti GPUs and an
Intel CPU running at 2.90 GHz. The results can be repro-
duced by following the experimental platform established
by the OpenOOD benchmark [44] 5.

In addition to the overview of PRO provided in Algo-

5https://github.com/Jingkang50/OpenOOD

Figure A2. Distribution plots of MSP score shift introduced by
one-step perturbation on a default ImageNet model without adver-
sarial training.

Figure A3. Distribution plots of MSP score shift introduced
by one-step perturbation on an ImageNet model trained with
PixMix [18] data augmentation

rithm 1, we highlight a few additional implementation de-
tails. PRO has two hyperparameters which are determined
by the evaluation set of test benchmarks. We consider step
length ✏ to be within the range of 0.00005 to 0.01, with
perturbations applied to normalized image tensors. As for
update steps K, we limit it to a maximum of 7 to man-
age computational overhead. Additional hyperparameters
introduced by temperature scaling and GEN have reduced
search space for higher efficiency. Tab. A4 provides the
considered hyperparameter settings for different datasets. It
is important to note that the optimal hyperparameters may
vary across different pre-trained models.
Hyperparameter sensitivity analysis. Please see Fig. A5
as an ablation study on hyperparameter. The key takeaway
here is to use a small perturbation step ✏ which stably im-
prove performance as step number K increases.



(a) CIFAR-10: LRR [8] (b) ImageNet: AugMix[17]

(c) CIFAR-10: LRR [8] (d) ImageNet: AugMix[17]

Figure A4. PRO method reshapes scores distribution. We select MSP and ENT from a robust CIFAR-10 model and a robust ImageNet
model. In above plots, OOD for CIFAR-10 is SVHN [33] and OOD for ImageNet is Texture[4].

Default Model PixMix AugMix RegMixup
Method Near-OOD Far-OOD Near-OOD Far-OOD Near-OOD Far-OOD Near-OOD Far-OOD

MSP[15] 65.68/76.02 51.45/85.23 65.89/76.86 51.11/85.63 64.45/77.49 46.94/86.67 65.33/77.04 48.91/86.31
TempScaling[13] 64.5/77.14 46.64/87.56 64.85/78.02 46.82/87.59 62.61/78.57 42.07/88.75 64.26/77.87 44.6/87.95
Entropy[15] 64.96/77.38 47.86/88.01 64.69/78.38 46.16/88.41 63.16/78.78 41.81/89.41 63.69/78.24 41.9/88.95
GEN[30] 65.32/76.85 35.61/89.76 66.77/77.78 38.13/89.54 64.0/78.72 32.98/90.99 63.16/77.65 34.78/89.65
ODIN[27] 72.5/74.75 43.96/89.47 75.32/74.32 61.36/84.45 67.71/77.69 36.52/91.1 74.5/75.18 49.47/88.79
GradNorm[20] 78.89/72.96 47.92/90.25 85.37/63.42 79.68/72.27 76.3/72.14 60.35/85.01 81.96/69.22 58.99/85.75
MLS[16] 67.82/76.46 38.22/89.57 67.57/78.28 41.36/89.21 63.36/79.14 33.47/90.87 67.99/77.43 38.93/89.25
EBO[29] 68.56/75.89 38.39/89.47 68.75/77.75 41.04/89.3 64.17/78.76 33.45/90.95 69.06/76.48 39.97/88.87
RankFeat[36] 91.83/50.99 87.17/53.93 95.36/42.27 90.32/42.62 93.09/51.18 81.14/60.44 96.92/41.4 94.68/38.39
PRO-MSP 65.0/76.9 52.87/85.54 63.36/77.66 47.2/87.15 63.49/78.21 47.77/87.01 64.59/77.58 50.87/86.2
PRO-MSP-T 67.5/76.54 37.96/89.61 65.21/78.77 40.19/88.92 63.33/79.14 33.48/90.86 67.59/77.5 38.61/89.29
PRO-ENT 64.55/77.66 46.57/87.85 61.71/78.8 41.78/88.49 62.41/79.01 39.85/89.24 63.52/78.26 41.73/88.9
PRO-GEN 65.13/76.62 37.21/89.32 64.05/78.2 37.57/89.37 62.08/78.56 32.35/90.65 62.96/77.48 35.82/88.99

Table A1. OOD detection performance on ImageNet. Besides general table format best metric, second best metric, and our methods .



IND: CIFAR-10 OOD detection performance: FPR@95 # / AUROC "
Method Cifar100 TIN MNIST SVHN Texture Places365 Average
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MSP[15] 27.76/91.72 22.86/92.99 19.84/93.79 17.90/94.27 16.37/95.28 23.72/92.80 21.41/93.47
TempScaling[13] 27.76/91.72 22.86/92.99 19.84/93.80 17.90/94.27 16.37/95.29 23.72/92.80 21.41/93.48
Entropy[15] 27.76/91.85 22.86/93.15 19.84/94.02 17.90/94.41 16.37/95.49 23.72/92.97 21.41/93.65
GEN[30] 27.76/91.87 22.89/93.17 19.84/94.05 17.91/94.42 16.37/95.51 23.72/93.00 21.42/93.67
ODIN[27] 32.51/91.03 27.02/92.28 13.40/96.29 19.68/94.11 15.96/95.49 28.24/91.94 22.80/93.52
MLS[16] 27.76/91.73 22.86/93.00 19.84/93.81 17.90/94.28 16.37/95.30 23.72/92.81 21.41/93.49
EBO[29] 27.76/91.87 22.87/93.18 19.84/94.05 17.91/94.43 16.37/95.51 23.72/93.00 21.41/93.67
ASH[9] 70.56/79.54 68.27/81.34 50.40/88.65 82.06/65.88 61.62/85.02 57.06/85.46 64.99/80.98
ReAct[37] 74.18/74.78 71.72/78.00 59.22/82.77 82.07/59.04 73.30/75.50 58.23/85.20 69.79/75.88
Scale[43] 64.16/83.67 60.18/85.64 49.46/88.89 74.01/76.93 56.48/87.22 50.30/88.56 59.10/85.15
PRO-MSP 29.01/92.09 23.41/93.61 28.76/92.27 12.62/95.71 20.29/94.87 24.43/93.53 23.09/93.68
PRO-MSP-T 29.64/91.83 24.30/93.48 28.86/92.14 14.64/95.48 22.72/94.67 25.84/93.43 24.33/93.50
PRO-ENT 28.82/92.45 23.47/94.08 28.46/93.13 14.43/95.76 19.93/95.43 24.24/94.07 23.23/94.15
PRO-GEN 29.57/92.37 24.08/94.09 28.62/93.16 14.06/95.79 21.62/95.28 25.50/94.11 23.91/94.13
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MSP[15] 31.58/90.25 27.87/91.24 17.26/95.32 23.33/92.10 21.39/93.45 29.47/91.04 25.15/92.23
TempScaling[13] 31.58/90.26 27.87/91.24 17.26/95.33 23.33/92.10 21.39/93.46 29.47/91.05 25.15/92.24
Entropy[15] 31.58/90.50 27.87/91.52 17.18/95.89 23.33/92.25 21.42/93.82 29.47/91.36 25.14/92.56
GEN[30] 31.58/90.53 27.87/91.56 17.17/95.97 23.33/92.28 21.46/93.86 29.48/91.40 25.15/92.60
ODIN[27] 32.37/90.17 29.59/90.84 6.86/98.53 25.42/91.50 23.53/93.54 30.83/90.70 24.77/92.55
MLS[16] 31.58/90.27 27.87/91.26 17.26/95.36 23.33/92.11 21.39/93.48 29.47/91.07 25.15/92.26
EBO[29] 31.58/90.54 27.86/91.57 17.17/95.97 23.31/92.28 21.43/93.87 29.47/91.41 25.14/92.61
PRO-MSP 35.08/89.67 30.52/91.29 31.03/92.45 18.56/93.35 27.98/92.50 31.58/91.38 29.12/91.77
PRO-MSP-T 34.01/89.98 29.77/91.47 27.72/92.93 17.37/93.78 24.96/92.97 30.63/91.50 27.41/92.11
PRO-ENT 34.84/90.17 30.20/91.94 30.51/93.55 20.17/93.30 27.34/93.21 31.42/92.07 29.08/92.37
PRO-GEN 33.88/90.43 29.57/92.03 27.14/93.98 17.40/93.91 24.68/93.64 30.61/92.11 27.21/92.68
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MSP[15] 29.66/91.03 26.22/92.03 13.66/96.09 27.87/90.84 27.79/91.46 25.93/92.12 25.19/92.26
TempScaling[13] 29.11/91.42 25.49/92.48 12.66/96.75 27.91/90.96 27.56/91.83 25.31/92.61 24.67/92.67
Entropy[15] 29.38/91.51 25.90/92.59 13.09/97.02 27.83/91.04 27.80/91.94 25.63/92.72 24.94/92.80
GEN[30] 29.43/92.13 23.51/93.63 6.43/98.60 33.93/89.04 29.30/91.90 22.76/94.03 24.23/93.22
ODIN[27] 42.48/89.40 39.19/90.18 0.97/99.74 77.19/73.85 51.96/87.73 32.21/91.64 40.67/88.76
MLS[16] 29.92/92.08 23.91/93.59 6.56/98.51 36.03/88.82 29.72/91.80 22.73/94.00 24.81/93.13
EBO[29] 29.90/92.04 23.97/93.60 6.04/98.67 36.12/88.52 29.98/91.70 22.71/94.04 24.79/93.09
ASH[9] 35.47/90.95 29.67/92.34 4.18/99.13 54.46/84.75 30.01/92.59 22.84/93.80 29.44/92.26
Scale[43] 34.53/91.59 28.28/93.07 3.46/99.22 56.68/85.31 28.70/93.13 23.24/94.02 29.15/92.72
PRO-MSP 30.23/90.70 26.89/91.95 19.27/94.53 17.23/93.31 30.13/90.95 27.02/92.06 25.13/92.25
PRO-MSP-T 29.90/92.08 23.73/93.61 6.67/98.47 34.67/89.32 29.94/91.81 22.73/94.01 24.61/93.22
PRO-ENT 30.96/91.37 27.22/92.99 19.50/96.21 24.76/92.10 32.24/91.37 27.52/93.18 27.03/92.87
PRO-GEN 29.36/92.12 23.46/93.66 6.61/98.55 31.97/89.87 29.53/91.89 22.60/94.05 23.92/93.36

Table A2. OOD detection performance on three CIFAR-10 robust models.



IND: CIFAR-100 OOD detection performance: FPR@95 # / AUROC "
Method Cifar10 TIN MNIST SVHN Texture Places365 Average
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MSP[15] 58.91/78.47 50.70/82.07 57.23/76.08 59.07/78.42 61.88/77.32 56.62/79.22 57.40/78.60
TempScaling[13] 58.72/79.02 50.26/82.79 56.05/77.27 57.71/79.79 61.56/78.11 56.46/79.80 56.79/79.46
Entropy[15] 58.83/79.21 50.33/83.08 56.73/77.46 58.47/80.11 61.68/78.32 56.43/79.99 57.08/79.70
GEN[30] 58.87/79.38 49.98/83.25 53.92/78.29 55.45/81.41 61.23/78.74 56.25/80.28 55.95/80.23
ODIN[27] 60.64/78.18 55.19/81.63 45.94/83.79 67.41/74.54 62.37/79.33 59.71/79.45 58.54/79.49
PRO-MSP 60.84/78.75 51.36/82.82 62.38/73.31 48.30/84.35 66.45/75.91 57.00/79.47 57.72/79.10
PRO-MSP-T 60.18/79.05 51.13/83.03 56.13/76.32 44.29/85.48 64.43/77.46 57.24/79.59 55.57/80.15
PRO-ENT 60.17/79.09 50.21/83.34 60.69/74.72 46.62/86.06 64.77/77.21 56.63/79.79 56.51/80.04
PRO-GEN 59.83/79.24 49.62/83.47 58.07/75.80 46.81/85.51 63.45/77.85 56.18/80.07 55.66/80.32
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MSP[15] 57.19/78.88 50.36/81.49 57.46/74.67 52.73/78.87 62.81/74.53 56.52/78.17 56.18/77.77
TempScaling[13] 57.48/79.91 49.02/83.07 55.00/77.96 52.17/79.79 62.31/75.62 56.14/79.15 55.35/79.25
Entropy[15] 57.03/79.85 49.97/82.97 56.83/77.01 52.50/79.73 62.83/75.31 56.43/79.07 55.93/78.99
GEN[30] 58.52/80.68 46.41/84.43 49.08/80.70 47.88/81.82 60.02/77.30 54.01/80.56 52.65/80.92
ODIN[27] 68.01/76.36 56.21/80.59 20.62/94.96 75.73/66.27 70.17/73.40 65.94/74.85 59.45/77.74
PRO-MSP 59.16/79.14 51.32/82.73 69.49/70.39 51.13/81.35 69.44/74.01 55.88/78.97 59.40/77.77
PRO-MSP-T 61.94/79.94 49.18/84.01 47.60/83.33 39.06/84.15 64.18/76.02 57.11/79.09 53.18/81.09
PRO-ENT 58.64/80.23 49.98/84.12 66.20/74.01 42.50/84.58 67.42/75.45 55.23/80.10 56.66/79.75
PRO-GEN 59.57/80.47 46.63/84.41 55.73/76.58 37.30/85.16 61.18/76.86 52.58/80.84 52.16/80.72
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MSP[15] 62.81/77.05 53.92/80.85 71.29/67.01 51.81/80.96 69.90/74.64 59.13/78.02 61.48/76.42
TempScaling[13] 63.20/77.75 53.03/81.90 69.83/69.10 49.90/82.22 67.57/76.06 57.87/79.04 60.23/77.68
Entropy[15] 63.08/78.41 52.99/82.81 70.48/70.51 49.71/83.29 68.00/77.04 58.02/79.88 60.38/78.66
GEN[30] 64.22/78.63 50.74/83.40 66.94/74.32 45.08/84.00 64.97/78.93 55.94/80.72 57.98/80.00
ODIN[27] 73.06/73.28 67.00/77.42 32.00/91.08 82.71/64.36 67.63/78.46 66.87/76.59 64.88/76.86
PRO-MSP 63.39/77.91 53.43/82.02 78.78/62.85 45.18/83.60 73.17/74.83 58.00/79.25 61.99/76.74
PRO-MSP-T 66.02/78.40 50.63/83.33 61.53/75.71 38.79/86.49 60.08/79.94 54.50/80.96 55.26/80.80
PRO-ENT 63.48/78.63 51.63/83.22 73.51/68.52 34.88/89.64 69.08/77.66 56.98/80.31 58.26/79.66
PRO-GEN 64.34/78.64 50.36/83.50 68.34/73.47 37.96/87.06 65.40/79.14 55.58/80.83 57.00/80.44
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MSP[15] 57.77/79.48 48.12/83.35 59.53/70.34 47.17/84.15 55.59/79.36 54.12/80.54 53.72/79.54
TempScaling[13] 57.77/79.48 48.12/83.35 59.53/70.34 47.17/84.16 55.59/79.37 54.12/80.54 53.72/79.54
Entropy[15] 57.77/79.83 48.12/83.86 59.53/71.10 47.16/84.78 55.59/79.60 54.11/80.91 53.71/80.01
GEN[30] 57.78/79.85 48.14/83.91 59.54/71.20 47.16/84.85 55.58/79.63 54.11/80.94 53.72/80.06
ODIN[27] 58.73/77.26 49.40/81.51 47.80/80.06 44.83/84.80 55.17/80.57 54.31/79.24 51.71/80.57
PRO-MSP 58.54/79.69 48.26/84.10 76.64/64.89 37.41/86.72 65.57/77.44 53.29/81.14 56.62/79.00
PRO-MSP-T 58.52/79.69 48.17/84.10 76.64/64.90 37.31/86.77 65.56/77.45 53.29/81.15 56.58/79.01
PRO-ENT 58.46/80.31 46.73/84.68 72.91/66.93 32.80/88.13 62.20/78.08 52.21/81.67 54.22/79.97
PRO-GEN 58.78/80.26 45.98/84.74 74.50/67.05 33.23/87.17 63.48/77.84 52.33/81.61 54.72/79.78
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MSP[15] 55.42/80.12 51.20/81.69 51.33/80.55 53.92/78.48 67.49/73.44 55.39/79.32 55.79/78.93
TempScaling[13] 55.52/80.84 50.17/82.65 49.06/82.76 53.20/78.82 66.66/73.99 55.12/80.03 54.96/79.85
Entropy[15] 55.51/81.08 50.63/82.95 50.24/83.29 53.46/78.84 67.41/73.95 55.17/80.18 55.40/80.05
GEN[30] 57.81/81.02 51.04/83.17 40.81/86.32 52.54/78.21 66.01/74.34 54.60/80.26 53.80/80.55
ODIN[27] 66.33/77.34 62.21/78.68 19.21/95.70 78.33/66.72 74.37/72.57 62.93/76.59 60.56/77.93
PRO-MSP 58.48/80.08 52.24/82.51 61.60/79.00 53.24/79.91 73.07/72.05 56.01/79.77 59.11/78.89
PRO-MSP-T 58.33/80.93 51.24/83.02 41.50/85.99 49.43/79.96 67.62/74.15 55.04/80.18 53.86/80.70
PRO-ENT 56.56/81.17 50.14/83.48 52.33/83.06 40.87/85.80 68.74/74.30 54.51/80.75 53.86/81.43
PRO-GEN 57.58/81.20 50.11/83.44 44.07/84.84 45.74/82.11 66.44/74.57 53.59/80.63 52.92/81.13

Table A3. OOD detection performance on CIFAR-100 models across one default model and four robust models.



Figure A5. Hyperparameter sensitivity analysis of PRO-MSP:
Statistics are evaluated across three default CIFAR-10 models.
obtained from independent training runs without applying robust
training.

Method Dataset Hyperparameters
PRO-MSP Cifar-10 {0.0003, 3}
{✏, K} Cifar-100 {0.001, 5}

ImageNet {0.0005, 3}
PRO-MSP-T Cifar-10 {0.001, 5, 1000}
{✏, K, T} Cifar-100 {0.001, 5, 10}

ImageNet {1.0e-05, 1, 10}
PRO-ENT Cifar-10 {0.001, 1}
{✏, K} Cifar-100 {0.0005, 7}

ImageNet {5.0e-05, 7}
PRO-GEN Cifar-10 {0.1, 10, 0.001, 5}
{�, M, ✏, K} Cifar-100 {0.01, 100, 0.0008, 5}

ImageNet {0.1, 100, 0.0003, 1}

Table A4. Example hyperparameters of PRO
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