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Detailed network architecture specifications, training
procedures, and inference protocols are provided in the sup-
plementary material.

Network Architectures We implement our network ar-
chitecture in PyTorch. The Pyramid VAE backbone com-
prises a 16-layer encoder and 32-layer decoder, with a la-
tent dimension of 64 and network width of 768. This
asymmetric design enables better feature extraction and re-
construction capabilities. The MAR component adopts a
Transformer-based encoder-decoder architecture, featuring
16 layers in both the encoder and decoder paths, 16 attention
heads per layer, and an embedding dimension of 1024. This
design choice facilitates effective modeling of long-range
dependencies in 3D geometry. The MLP-based diffusion
module consists of 6 layers with a width of 1024, which
provides sufficient capacity for the denoising process while
maintaining computational efficiency. For condition encod-
ing, we leverage pre-trained vision transformers: DINOv2
ViT-g/14 and CLIP ViT-Large-Patch14. Prior to feeding im-
ages into the encoders, we resize all input images to a reso-
lution of 224×224 pixels.

Training and Inference Details Our MAR-LR and
MAR-HR and trained parallel with the same training strat-
egy using coarse and fine-grained data. Optimization For
training, we employ the AdamW optimizer with an initial
learning rate of 1 × 10−5, β1 = 0.9, β2 = 0.99, and
ε = 1 × 10−6. We adopt a two-stage learning rate sched-
ule: first, a linear warm-up is applied for 5000 iterations,
increasing the learning rate from 1 × 10−11 to 1 × 10−5,
followed by a cosine annealing schedule that gradually de-
creases the learning rate to zero over 5000 iterations. This
scheduling strategy helps stabilize early training while en-
suring convergence in later stages. During inference, the
reverse denoising steps is set to 100. Auto-regressive steps
are set to 64 for MAR-LR, taking 40 seconds, while MAL-
HR used 32 steps, requiring 20 seconds.

Shape Variation Our method demonstrates the ability to
generate diverse 3D meshes while maintaining fidelity to
the input reference images. As shown in Fig. 7, given a sin-
gle conditioning image (leftmost column), our approach can
produce multiple plausible 3D mesh variations by sampling
different random seeds. For both the cartoon fox and Mario
character examples, the generated meshes preserve the key

Figure 7. Shape variation of our MAR-3D We show side views
of meshes generated from the same input condition image using
different random seeds.

Setting F-Score ↑ CD ↓ NC↑
(a) 0.901 0.553 0.755
(b) 0.834 0.786 0.721
(c) 0.855 0.687 0.743
(d) 0.911 0.545 0.758
(e) 0.921 0.411 0.794
(f) 0.878 0.604 0.762
(g) 0.902 0.435 0.789
(h) 0.944 0.351 0.835

Table 3. Ablation study of different components in our method.
Configurations (a) through (h) correspond to those presented in the
Generation Ablations section of the main paper.

characteristics and style of the input while exhibiting mean-
ingful variations in pose and subtle geometric details. All
variations maintain coherent 3D structure and consistent
proportions, suggesting that our method successfully learns
to explore the latent space of plausible 3D shapes within
the constraints defined by the input image. This variational
capability is particularly valuable for content creation appli-
cations where users may want to generate multiple creative
alternatives from a single reference.

More Ablation Study We conduct a quantitative evalu-
ation study comparing our progressive MAR design with
DiT. Results in Tab. 3 corroborate our findings from the
Generation Ablations section in the main paper: our cas-
caded MAR architecture with condition augmentation out-
performs the DiT structure, providing an efficient and effec-
tive approach for scaling up token resolution while main-
taining model performance and computational efficiency.


