MeshGen: Generating PBR Textured Mesh with Render-Enhanced
Auto-Encoder and Generative Data Augmentation

Supplementary Material

A. Implementation details

A.l. Auto-encoder

Hyper-parameters. We present our hyper-parameter set-
ting in training auto-encoder in Tab. 4.

Data preparation. To calculate occupancy, the target mesh
needs to be watertight, but most meshes in Objaverse do
not meet this requirement. Therefore, we need to convert
non-watertight meshes into watertight ones. Specifically,
for each non-watertight mesh, we follow CLAY [95], first
computing an unsigned distance field with a resolution of
5123. Then, we use the marching cubes algorithm with a
threshold of 2/512 to extract the isosurface. To avoid thin
surfaces inside and thin surfaces, we mark all parts not con-
nected to the outermost region as internal, which can be
quickly achieved using a connected component labeling al-
gorithm. With off-the-shelf CUDA-based tools like torchc-
umesh2sdf [20] and cc_torch [102], the preprocessing of a
mesh can be done within 0.1s on a single GPU.

Training data. We train our MeshGen auto-encoder on
a filtered subset of Objaverse [16] consisting of approxi-
mately 150k triangle meshes. For each mesh, we first nor-
malize into [—1,1]® and uniformly sample 65536 surface
points on the mesh surface as the input of our auto-encoder.
We then sample 100,000 spatial points near the surface by
adding Gaussian noise with 0.01 std to the surface points.
For random spatial points, we use stratified sampling to
sample in a 642 grid uniformly. We pre-compute and store
surface points, sampled spatial points, and corresponding
binary occupancy values for training efficiency.

Training details. We first train our auto-encoder for 150
epochs in the coarse stage with a batch size of 192. During
training, we select an equal number of near points and ran-
dom points for supervision [91]. The model obtained after
the coarse stage can reconstruct the rough shape of the orig-
inal mesh but lacks details. We then train the auto-encoder
for another 50 epochs with the proposed render loss and
ray-based regularization incorporated and a batch size of
16. The whole training process lasts 6 days on 8 NVIDIA
A100 GPUs.

A.2. Image-to-shape diffusion model

Generative rendering augmentation. In generative ren-
dering data augmentation, to enhance the similarity between
the generated images and the original image, in addition
to using the normal depth ControlNet and IP-adapter, we
set the initial noise to the latent of the original image with

maximum noise added. For relighting diffusion, we used
IC-light [94]. Specifically, during data augmentation, we
randomly select one lighting direction from the pre-defined
light initial latent in IC-light (i.e., uniformly select from
left, right, top, and bottom), and choose one lighting con-
dition from a set of predefined light prompts. For filtering
out low-quality images, we trained an MLP evaluator on
500 samples using CLIP embeddings of the original and re-
lighted images to estimate quality scores. This straightfor-
ward method achieves 91% accuracy on the validation set
(100 samples).

Model setup. Our diffusion UNet takes in the noised tri-
plane latent and exploits 8 ResNet blocks with spatial self-
attention as the encoder and a symmetric architecture as the
decoder. We exploit DINOv2-G [48] to encode the input
image and inject the extracted feature to the diffusion UNet
using cross-attention [56]. For the diffusion schedule, we
follow SD3 [21] to use the simple yet effective rectified
flow [40] with timesteps sampled from a standard logit-
normal distribution.

Training data. We train the image-to-shape diffusion
model with our proposed augmentations on a filtered sub-
set of GObjaverse [51], which consists of about 120k high-
quality meshes. During training, we randomly select one
view as condition for the diffusion UNet and apply our
proposed augmentations for both geometric and image en-
hancement.

Training details. To handle input images with different
elevations, since the meshes in Objaverse are aligned in
the gravity axis, we force the diffusion to generate meshes
with an absolute elevation equal to zero. We experimentally
found that this conditioning method works better than gen-
erating meshes with a rotation in elevation, as suggested in
Chen et al. [13]. We train the diffusion UNet of 16 NVIDIA
A800 GPUs using bfl16 precision with an effective batch
size of 1536. The whole training lasts for about 18 days.

A.3. PBR texture generation

Reference attention. We demonstrate how reference at-
tention works in figure 7. To condition the diffusion model
on the reference image, we pass the noised reference im-
age (at the same noise levels as the denoising latent) into
the same diffusion UNet to obtain the key and value tensors
of the reference image in self-attention layers. During sam-
pling, the key and value tensors of the reference image are
appended to the key and value tensors of the multi-views,
enabling the diffusion model to perceive the reference im-

Table 4. Concrete hyper-parameter setting of our render-enhanced auto-encoder.

Symbol Meaning Value
Np Number of points sampled from a mesh 65536
N, Number of learnable queries 3072
Number of self-attention layers 10
d, Dimension of the latent space 16
Ny Number of samples for calculating ray-based regularization loss 128
AKL Loss weight for KL loss 106
ATv Loss weight for TV loss 5x 1073
AMSE Loss weight for normal MSE loss 1.0
ALPIPS Loss weight for normal LPIPS loss 2.0
Areg Loss weight for ray-based regularization loss 0.5

Sharing parameter
g k
¥ o
a8

Multiview

Add noise
Add noise

&

Reference
view

=

s @ 5| @
= €

2 K . - 2 K
© Concat in sequence dim ®

o s

& Y F—> V

Concat in sequence dim

Figure 7. An illustration of reference attention.

age with more fine-grained information. This technique is
also used in image editing [92] and video generation [25].

Data preparation. To train the geometry-conditioned
ControlNet and the multi-view PBR decomposer, we ren-
der multi-view images along with corresponding normals,
depth, albedo, roughness, and metallic maps from a subset
of Objaverse containing PBR materials using Blender. This
creates a dataset of approximately 35k multi-view images.
For UV space inpainting, we calculate multi-view visible
masks and back-project them into UV space to identify the
invisible parts of the texture map, rendering the UV space
position and normal maps. To enhance robustness, we ran-
domly erode the visible masks in both pixel and UV spaces.

Geometry-conditioned ControlNet. Our geometry-
conditioned sparse view generator is built upon
Zerol23++ [61], which generates six views according
to a given front view. Specifically, Zerol23++ generates
a 3x2 image grid by fine-tuning Stable Diffusion [56]
on Objaverse renderings. To ensure the model perceives
precise depth and positional information, we did not
transform depth to normalized disparity as done in the
original depth ControlNet [93]; instead, we performed a

unified multi-view normalization based on camera distance
and object bounding box. Specifically, the depth map
is processed as Diomalized = Dszatl’;as, where bias equals
to camera distance minus the length of the diagonal of
the bounding box (i.e. the minimal possible depth value)
and the scale equals to the length of the diagonal of the
bounding box.

Multi-view target back-projection. As detailed in the
main text, the obtained multi-view PBR components are
merged in UV space using back-projection with softmax.
We apply a softmax operation with a temperature of 0.1
to ensure consistent textures. However, images generated
by ControlNet sometimes extend beyond object boundaries,
causing some pixels to be back-projected onto surfaces be-
hind them, leading to artifacts on the final texture map. To
address this, we propose a simple depth filtering technique.
For each view, we identify locations in the depth map where
sudden changes occur and exclude these pixels during back-
projection. Our experiments demonstrate that this approach
effectively reduces artifacts, and the color values of the cor-
responding surface points can be supplemented by other
views, as shown in the middle of Fig. 8.

PBR decomposer. Our PBR decomposer is built on
Zero123++ and incorporates multi-view shaded images us-
ing an InstructPix2Pix-based architecture. Specifically, the
latent representation of the multi-view shaded image is con-
catenated along the channel dimension with the noisy la-
tent. Each PBR channel is generated by the diffusion
model using specific textual prompts. For instance, the
model generates component y using the prompt y, where
y € {"metallic", "roughness", "albedo"}.

UV space inpainting. Our UV space inpainter is a multi-
channel ControlNet trained on top of the LoRA fine-tuned
Stable Diffusion 1.5 [56]. The input to our inpainting model
is a 9-channel image: the first three channels represent the
normal map in UV space, the middle three channels repre-
sent the position map, and the last three channels contain

Table 5. Quantitative ablation study on the proposed data aug-
mentation and comparison with Direct3D. FS and CD denote f-
score and chamfer distance. FSgym, FSusym, and FScomplex represent
f-scores for symmetric, asymmetric objects, and complex lighting
images. Parentheses indicate metric changes for each modifica-
tion.

Method ‘ FST CD~|/ ‘ Fssym T Fsasym T ‘ FScomplex T

+ render-ehanced VAE | 0.907 0.061 0.932 0.881(+.04) | 0.841(+.008)

+ generative rendering | 0.918 0.053 | 0.944 0.892(+.05) | 0.897(+.064)

+ geometric alignment | 0.955 0.035 | 0.962 0.947@.11) | 0.855+.020)
Ours (full) ‘ 0.970 0.028 ‘ 0.974 0.965 ‘ 0.902

the masked texture map, with pixel values set to -1 in re-
gions that requires inpainting. During inference, we follow
ControlNet inpainting [93], applying masking in the latent
space to maintain consistency in areas that do not require
inpainting.

B. More experiments
B.1. More ablations

Number of points in auto-encoder. We use 65536 points
per mesh in auto-encoding. This decision stems from ob-
serving that VAE reconstruction quality saturates at a high
number of points (Fig. 9).

Quantitative ablation of generative data augmentation.
As shown in Tab. 5, geometric alignment enhances perfor-
mance on asymmetric objects, and generative rendering im-
proves results under images with complex lighting condi-
tions. Compared to Direct3D, each model design leads to
significant improvements across all metrics.

The effectiveness of ray-based regularization. We show
in the left part of Fig. 8 an example obtained using an auto-
encoder trained without ray-based regularization. Without
ray-based regularization, the training of the auto-encoder
quickly becomes unstable, resulting in severe floaters in the
reconstructed mesh.

Quatitative ablation study on render-enhanced auto-
encoder. To better assess the importance of incorporating
render loss in our render-enhanced auto-encoder, we pro-
pose several variants and demonstrate the corresponding ac-
curacy and volumeloU on a validation set of Objaverse con-
sisting of 2048 objects in Tab. 6. Here, “base” represents the
case with only BCE loss, while “w/. 3D GAN loss” repre-
sents incorporating the 3D patch-based GAN loss proposed
in Zheng et al. [100].

As shown in Tab. 6, removing either the MSE loss or
the LPIPS loss leads to a certain performance drop. More-
over, compared to the 3D patch-based GAN loss, the pro-
posed render-based perceptual loss is more beneficial for
auto-encoder training.

UV-space texture inpainting. In the right part of Fig. 8,
we compare the mesh obtained without UV inpainting. The
figure clearly shows that without UV inpainting, colors may

be missing from regions that are not visible from the fixed
viewpoints of the multi-view diffusion. UV space inpaint-
ing effectively fills these regions, enhancing both the visual
quality and realism of the model.

B.2. More results

Quantitative evaluation on texture generation. The re-
sults in Tab. 7 show that MeshGen significantly outperforms
other baselines across all metrics under both original and
relighted settings, improving both reconstruction and gen-
eration metrics by a large margin.

More comparison with LRMs. In Fig. 14, we
present more qualitative comparisons with large reconstruc-
tion models on image-to-shape generation, including In-
stantMesh [83], MeshLRM [78], and MeshFormer [39].
Our method outperforms other large reconstruction models
in capturing geometric details, such as the webbed feet of a
frog and the handle of a backpack.

More comparison with 3D native methods. In Fig. 15, we
present more qualitative comparisons with 3D native diffu-
sion models, including CraftsMan [34], 3DTopia-XL [11],
and a more recent model with billion-level parameters,
Wal.a [58]. Clearly, the meshes generated by other meth-
ods are significantly lower in quality compared to ours and
fail to produce meshes similar to the images, which intro-
duces additional challenges for subsequent texturing. Al-
though Wal.a uses more parameters and a much larger train-
ing dataset than we do, thanks to our proposed augmen-
tations, our method greatly outperforms WalLa in terms of
mesh quality and image-shape alignment.

Compare with large reconstruction models with texture.
To comprehensively compare our approach with large re-
construction models, we compare the final generated tex-
tured mesh in Fig. 10. It is evident from the figure that our
method not only exceeds the previous best large reconstruc-
tion models in geometry but also produces clearer and more
consistent textures.

PBR joint generation v.s. PBR decomposition. In addi-
tion to our proposed multi-view PBR decomposer, previous
methods like HyperHuman [41] and CLAY [95] have sug-
gested using expert branches to generate PBR components

Table 6. Quantitative ablation study on the proposed render-
enhanced auto-encoder.

Setting Accuracy? VolumeloU?T
w/o. LMSE 95.972 89.977
w/o. LLPIPS 96.021 90.044
w/. 3D patch GAN loss 96.224 90.149
base 94.745 87.164
Ours 96.987 91.045

w. regularization w/o. regularization

wj/o. depth filtering w. depth filtering

w/o. UV inpainting w. UV inpainting

Figure 8. Ablations on ray-based regularization, depth filtering, and UV space inpainting.

0.95 1

0.90 1

F-score

0.80 1

0.751

0.701

— T T T
© gV © e S
9°.9 > © ©
N N o
S o A ©

. .
© o

S oS
& &

Number of points
Figure 9. Ablations on the number of points used in mesh auto-
encoding.

Table 7. Quantitative comparisons on PBR texture generation.
T denotes methods unable to generate PBR textures; baked-in tex-
tures are used as albedo for relighting.

Generative Original lighting Relighted

Method | pip|” KID| PSNRT LPIPS, PSNR{ LPIPS|

TEXTure 28.03 7.6 18.74 0.157 16217 0.188f
Fantasia3D | 24.16 5.22 19.04 0.134 17.42 0.155
Paint3D 2528 5.19 19.2 0.144 16.04" 0.192f
Ours 20.14 3.21 22.87 0.089 22.44 0.098

from image prompts. Specifically, they use a shared back-
bone diffusion network and different input/output adapters
to enable information sharing across different channels
while exploiting information in pre-training. To compare
this approach with our proposed PBR decomposer, we
trained a multi-view PBR component generator based on
the expert branch approach using the same data. As shown
in Fig. 16, we compare the PBR components generated by
both methods for the same reference image and mesh. It
can be seen that the model using the expert branch tends
to produce PBR channels with color blending and inaccu-
racies, leading to unreasonable metallic and roughness out-
puts. We believe this is because different PBR channels
should interact with the reference image in distinct ways
during generation, and the shared parts of the expert branch
hinder learning these different interactions. Additionally,

compared to the expert branch-based model, our PBR de-
composer inherently includes all multi-view information in
the input, resulting in better consistency in the generated
results. Furthermore, due to our limited data (or possibly
because our method requires less data), we consider com-
paring both models with larger datasets as future work.
Compare with commercial products. In Fig. 11, we com-
pare our method with existing non-open-source commer-
cial products. The results for Direct3D are sourced from
their paper, while those for HyperHuman Rodin are gen-
erated on their official website without the “symmetric”
tags. Although our method is currently limited by lack-
ing high-quality data and computational resources, result-
ing in slightly lower mesh quality compared to commer-
cial products, our proposed augmentation allows for better
alignment with the images while other commercial prod-
ucts tend to generate symmetrical objects. We believe that
with increased computational power and more high-quality
data, our method can match the mesh quality of commercial
products while preserving image-shape alignment.
Real-world images. To validate the performance of our
method on real-world objects, we present a set of tex-
tured meshes generated from casual captures in Fig. 12.
As shown in Fig. 12, our method is capable of generating
reasonable shapes and consistent textures when processing
real objects, demonstrating the generalization ability of our
pipeline.

PBR decomposition results. In Fig. 17, we present the
intrinsic channels estimated using our proposed multi-view
PBR decomposer. The results show that our PBR decom-
poser can accurately infer the PBR components of objects
by leveraging multi-view information and can still generate
multi-view consistent results under complex lighting condi-
tions.

C. Limitations

Although our method has made some progress in native

image-to-3D generation, there are still limitations in the fol-

lowing three areas.

1. Due to the limited resolution of multi-view diffusion
generation and the constraints of the auto-encoder used,

our texture model struggles to accurately reproduce
high-frequency details, such as the text on the box in the
left part of Fig. 13. We believe that using more advanced
network architectures with more high-quality data could
achieve higher-resolution multi-view generation.

2. Our texture model finds it challenging to accurately cap-
ture textures and lighting effects from input images when
dealing with objects with complex high-frequency infor-
mation and lighting conditions, as shown by the face in
the center of Fig. 13.

3. Our geometry and texture generation model currently
cannot effectively handle transparent objects, as illus-
trated by the object on the right in Fig. 13.

Addressing these limitations will be the focus of our future

research.

Input InstantMesh MeshLRM MeshFormer

%
-4
¥

G5

bt <0 I M8 o e (e M i ooe o

LA
o

R A=Y S Y ﬁsbﬂ(‘fw .‘ﬁ&u
ey < mm,p((b"atu

Figure 10. Qualitative comparison on textured meshes with state-of-the-art large reconstruction models, including InstantMesh [83],
MeshLRM [78] and MeshFormer [39].

Direct3D

Figure 11. Comparison with non-open-source commercial products, including Direct3D and Hyperhuman Rodin.

Input Generated textured mesh Input Generated textured mesh

Figure 12. Performance of MeshGen on real-world captures.

P

Input Generated mesh Input Generated mesh Input Generated mesh
Perricone MD i~ ﬂDFnO;x;e E ‘

|
| eoirenas B ‘1

Figure 13. Some typical failure cases of MeshGen.

WD 3y oy P B A = oGP E

£ £
S R i
(@] | L\ rM
)
=

BB . e P

m -
< g

WD R w2 D

= =
= 4 &
] ! , 2
s , | g
, . " 8

X m

=]

;WD o o OB D — B

..ML —_—
= =
£ =
c i ‘ 5
£ 3
b P g
,t -

S

2

]

; , =

o J N .)
= , , , &

4] m
S : =
_, g

\ Y|) L

<

T EWMB Vo i) QY 5 5y,

© o D e W
T M

s .,
(%] \x ﬂs.v
g . - - ! m
” : , =
S

, 2

4 ' :

F o@D e T =D .,a\f. Ly~ -ac
V_A
Folr X K L

, 8 |

2 . e :

Ol s s Hig
, | P M)

Roughness

Metallic

§)
P e

Expert branch
ve

Albedo

LA

50 o5 o e gD D

£ \l’

@
A

1A
|

=)

Y A

303

N J
l m
g = =
Kt
® &
=3

; -,

™ | S & S W Gy =
T | WEe § e O

oo

Roughness

=

RPAE

Metallic

PBR decomposer

Pe:.
B

L,

Albedo
o= oD

#

7

>® — &

af - % ¢ ﬂlv E Ib Ol |

- MVWV | am

Figure 16. Comparison of PBR decomposer and expert branch on PBR component generation.

Input Shaded multi-view Albedo Metallic Roughness

i
a

L
o
@
i

« By ¢« ®mE]

O & O m P g e 4 ¢ @ @&

2 ‘g/

w-f
9.
LI

o B o - B
Or S §= e PO 5m <

e
& g @

Figure 17. Intrinsic channels estimated using our multi-view PBR decomposer. The proposed PBR decomposer can handle images with
complicated material under different lighting conditions.

	Introduction
	Related Work
	3D Generation
	Texture Generation

	Method
	Render-enhanced auto-encoder
	Image-to-shape diffusion model with generative data augmentation
	Texture Generation

	Experiments
	Mesh Generation
	Texture Generation
	Ablations

	Conclusion and Limitation
	Acknowledgment
	Implementation details
	Auto-encoder
	Image-to-shape diffusion model
	PBR texture generation

	More experiments
	More ablations
	More results

	Limitations

