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Figure 1. Left part. Causal Relationship Verification through
classifier logits changes after editing with “overall orange color”
attribute. From the figure, we can observe that after only editing
the “overall orange color” attribute for the input images without
changing others, the majority of output, i.e. the classifier logits,
changes. This verifies there exists a causal relationship between this
attribute and the performance of classifier. Right part. Correction
rounds vs Performance relationship through analyzing the model
from last round and select Top-1 attribute for correction for each
round. As round number increases, performance firstly improves
and then becomes saturated.

1. Causal Relationship
In the main text, we leverage experimental analysis to dis-
close the “causal” relationship between the editing visual
attributes and model performance, measuring solely on a

Dataset Method HTER(↓) / AUC (↑) / TPR@FPR=1% (↑)

CLIP ViT-B/16 [18] DINOv2-B/14 [13]

Train (O and C) 6.19% / 97.71% / 50.48% 8.71% / 96.92% / 44.54%
Train + Validation (I) 3.96% / 98.98% / 80.95% 3.73% / 99.15% / 78.09%

MSU- Train + Top 1 Edited Copy 2.41% / 99.33% / 78.56% 3.02% / 98.89% / 75.62%

MFSD Train + Top 2 Edited Copies 2.21% / 99.48% / 94.01% 2.72% / 99.18% / 89.59%
Train + Top 3 Edited Copies 2.17% / 99.46% / 94.78% 2.44% / 99.30% / 91.11%
Train + Top 4 Edited Copies 2.11% / 99.52% / 95.32% 2.40% / 99.44% / 92.02%

Table 1. Model Correction Performance Comparisons between
adding MDC edited counterfactual training sets vs. adding real
validation set when testing on MSU dataset in face anti-spoofing
domain. We select attributes from Figure 4 of the Main Text and
then generate counterfactual training copies of OULU and CASIA
datasets with the pattern of selected attributes. Finally, we add them
to OULU and CASIA. “Top K Edited Copies” means we select
K attributes and generate K edited training set copies. In terms
of adding real validation set, we directly add Idiap to OULU and
CASIA. Here, it shows leveraging the distilled causal information
from validation set and further generating more training images is
superior than using the data solely from the validation set.

decline in the visual model’s recognition accuracy, which is
accurate but not adequate. Actually, to reveal such relation-
ship, we strictly follow the definition in [14], i.e. an output
event E happens after many input events occur. Formally,
the causal relationship is defined as “to determine whether
one input event ei is the cause for E, we generate counter-
factual, which only change one event ei from occurring to
non-occurring, and observe whether the probability of E
happens changes” [9]. Strictly applying this to our task, the
attributes of images in validation set are considered input
events, while the distribution of the classifier predicted logits
is considered the output event (in Section 1 of main text).
In left part of Figure 1, the values for majority Bona fide
logits decrease after editing, verifying the causal relationship
between added attribute and classifier output. This aligns
with results in main paper (relying on accuracy decline, i.e. a
consistent reflection for distribution changes of logits value).
Such cross-validaitons by strictly following the definition of
“causality” verify the attributes MDC found indeed own the
causal effects to the model performance.

2. Correction rounds vs Performance

In the main text, we only correct model once with multi-
ple attributes at the same time. Here, we run experiments
over multiple runs to bring additional insights and show the
visualization in right part of Figure 1. For each round, we
analyze the model from last round and select Top-1 attribute
for correction. As round number increases, performance
firstly improves and then becomes saturated. This verifies
that conducting one round correction is the best choice in



Dataset Method Acc@1 / Acc@5 (↑) Dataset Method Acc@1 / Acc@5 (↑)

ViT-L/14 CLIP ViT-B/16 [18] DINOv2-B/14 [13] ViT-L/14 CLIP ViT-B/16 [18] DINOv2-B/14 [13]

Original Training Set 90.54% / 97.40% 82.90% / 90.52% 83.81% / 91.64% Original Training Set 88.20% / 94.98% 82.17% / 90.95% 84.41% / 91.76%
LANCE [16] - Top 1 90.87% / 97.62% 83.38% / 90.87% 84.77% / 92.03% LANCE [16] - Top 1 89.53% / 95.77% 82.64% / 90.95% 84.42% / 92.01%
LANCE [16] - Top 2 90.98% / 97.70% 83.69% / 91.27% 84.69% / 92.16% LANCE [16] - Top 2 89.60% / 96.01% 83.43% / 91.17% 84.10% / 91.87%

Stanford LANCE [16] - Top 3 91.03% / 97.78% 84.11% / 91.57% 84.60% / 92.36% Tsinghua LANCE [16] - Top 3 89.72% / 96.14% 83.38% / 91.24% 84.33% / 92.00%

Dogs LANCE [16] - Top 4 91.00% / 98.05% 84.02% / 91.88% 84.77% / 92.11% Dogs LANCE [16] - Top 4 89.99% / 96.32% 83.56% / 91.28% 84.31% / 92.05%
MDC- Top 1 91.13% / 98.10% 84.58% / 91.75% 85.07% / 92.79% MDC- Top 1 90.03% / 96.35% 83.77% / 92.04% 85.98% / 92.65%
MDC- Top 2 91.56% / 98.37% 84.56% / 92.33% 86.02% / 93.26% MDC- Top 2 90.78% / 96.99% 84.52% / 92.70% 86.50% / 93.21%
MDC- Top 3 91.66% / 98.41% 84.66% / 92.43% 86.72% / 93.28% MDC- Top 3 90.90% / 97.04% 84.60% / 92.75% 86.61% / 93.40%
MDC- Top 4 91.68% / 98.40% 84.69% / 92.40% 86.66% / 93.31% MDC- Top 4 90.91% / 97.09% 84.72% / 92.79% 86.58% / 93.49%

CUB

Original Training Set 90.80% / 96.67% 76.79% / 88.07% 82.19% / 90.25%

NABirds

Original Training Set 91.99% / 97.03% 85.77% / 92.18% 84.38% / 91.86%
LANCE [16] - Top 1 91.43% / 97.00% 78.81% / 90.01% 83.20% / 90.88% LANCE [16] - Top 1 91.77% / 96.67% 86.07% / 92.25% 84.22% / 91.76%
LANCE [16] - Top 2 91.67% / 97.05% 78.51% / 90.10% 83.98% / 91.07% LANCE [16] - Top 2 91.89% / 97.01% 86.48% / 92.73% 84.67% / 92.12%
LANCE [16] - Top 3 91.63% / 97.08% 78.53% / 90.06% 84.00% / 91.43% LANCE [16] - Top 3 91.78% / 97.05% 86.50% / 92.41% 84.70% / 92.33%
LANCE [16] - Top 4 91.60% / 97.14% 78.56% / 90.15% 84.21% / 91.27% LANCE [16] - Top 4 91.68% / 97.08% 86.55% / 92.60% 84.74% / 92.36%
MDC- Top 1 91.58% / 97.27% 79.63% / 90.25% 84.44% / 91.56% MDC- Top 1 92.44% / 97.51% 86.63% / 92.89% 85.05% / 92.07%
MDC- Top 2 91.88% / 97.45% 81.62% / 91.22% 85.98% / 92.42% MDC- Top 2 92.98% / 97.87% 86.31% / 93.11% 85.64% / 92.45%
MDC- Top 3 91.83% / 97.48% 81.66% / 91.25% 86.10% / 92.56% MDC- Top 3 93.04% / 97.61% 86.35% / 93.18% 85.56% / 92.67%
MDC- Top 4 91.80% / 97.43% 81.57% / 91.11% 86.30% / 92.77% MDC- Top 4 93.00% / 97.65% 86.41% / 93.21% 85.49% / 92.61%

Table 2. Model Correction Complete Results in dog and bird species domains. We select Top K attributes from Figure 3 of the Main Text
based on the results of diagnosis only using ViT-L/14 classifiers on validation sets, i.e. test parts of Stanford Dogs and CUB. For classifier
retraining and correction, we augment the training part of each dataset and test on corresponding test part. Here, it shows that MDC is
superior than LANCE in leveraging causal attributes to boost the performance of the model. This Table is a complete version for Table 1 of
the Main Text.

Dataset Method HTER(↓) / AUC(↑) / TPR@FPR=1%(↑) Dataset Method HTER(↓) / AUC (↑) / TPR@FPR=1% (↑)

CLIP ViT-B/16 [18] DINOv2-B/14 [13] CLIP ViT-B/16 [18] DINOv2-B/14 [13]

Original Training Set 4.14% / 98.63% / 94.10% 6.06% / 98.18% / 80.13% Original Training Set 6.19% / 97.71% / 50.48% 8.71% / 96.92% / 44.54%
LANCE [16] - Top 1 3.89% / 98.88% / 95.30% 5.87% / 98.44% / 82.05% LANCE [16] - Top 1 5.87% / 98.02% / 52.77% 8.77% / 96.79% / 48.55%
LANCE [16] - Top 2 3.43% / 99.03% / 96.02% 5.37% / 98.73% / 85.59% LANCE [16] - Top 2 5.74% / 98.31% / 55.49% 7.99% / 97.02% / 53.14%

Idiap LANCE [16] - Top 3 3.38% / 99.01% / 96.10% 5.38% / 98.77% / 85.87% MSU- LANCE [16] - Top 3 5.88% / 98.10% / 57.14% 8.05% / 97.30% / 56.41%
Replay LANCE [16] - Top 4 3.44% / 99.04% / 96.14% 5.29% / 98.67% / 85.74% MFSD LANCE [16] - Top 4 5.67% / 98.66% / 59.04% 8.00% / 97.11% / 58.50%
Attack MDC- Top 1 1.66% / 99.60% / 98.64% 2.78% / 99.03% / 90.77% MDC- Top 1 2.62% / 99.24% / 75.24% 3.10% / 98.59% / 70.11%

MDC- Top 2 1.23% / 99.66% / 99.09% 1.99% / 99.12% / 96.34% MDC- Top 2 2.46% / 99.44% / 93.33% 2.88% / 99.03% / 88.20%
MDC- Top 3 1.37% / 99.63% / 99.15% 1.78% / 99.10% / 96.58% MDC- Top 3 2.43% / 99.40% / 94.01% 2.66% / 99.00% / 89.03%
MDC- Top 4 1.40% / 99.60% / 99.13% 1.71% / 99.01% / 96.62% MDC- Top 4 2.49% / 99.36% / 94.71% 2.63% / 98.99% / 89.28%

Table 3. Model Correction Complete Results in face anti-spoofing domain. We select attributes from Figure 4 of the Main Text based on
the results of diagnosis on Idiap and with CLIP ViT-B/16 classifier. For classifier retraining and correction, we augment the generated data to
training sets, i.e. OULU and CASIA. This Table is a complete version for Table 3 of the Main Text.

balancing the resource costs and performance gains.

3. Additional Model Correction Results
We provide more results for model correction. In Section 3.1,
we aim to verify that that adding edited counterfactual train-
ing data with the pattern of causal attributes is superior than
simply adding the real validation set, which is leveraged
for discovering causal attributes, to the training set. In Sec-
tion 3.2, we present the results via selecting more attributes
(Top 3 and 4) under the same model correction strategy with
main text.

3.1. Add Edited Training Set vs. Real Validation Set
In the main text, we claim one benefit of MDC is that “once
causality is confirmed, we can generate unlimited training
samples depicting the identified error pattern, which can be
further used for model correction without requiring addi-
tional data sourcing, saving time and cost while improving
accuracy, robustness.” This raises a straight forward ques-
tion: Now that we can generate more or even unlimited coun-
terfactual training samples with causal patterns to augment

the training set and boost the model, how is it compared with
simply adding the real validation set, which is leveraged
for discovering causal attributes, to the original training
set? To answer this question, we keep the strategy of se-
lecting causal attributes unchanged but modify our model
correction strategy. Instead of replacing part of the original
training set with counterfactual samples, we directly edit the
whole training set to contain the causal pattern of selected
attributes, and then directly add this counterfactual training
copy to original training data. Specifically, if we select Top
2 attributes, the final training data volume is 3 times larger
compared with the original training data volume. For com-
parison, we directly combine the training set and validation
set for training and leverage test set for evaluation as another
baseline.

We conduct this experiment on face anti-spoofing domain
since the training (OULU and CASIA), validation (Idiap),
and test (MSU) sets have the same classes. We select at-
tributes from Figure 4 of the Main Text. From Table 1, we
can observe that leveraging the distilled causal information
from validation set and further generating more training im-



Figure 2. Comparison of Implicit Attribute Editing of ours against more baselines using language-guided editing. Like what we did in
Section 4.3 of the Main Text, we firstly generate a long description of the image group using a MLLM and then use the generated description
to serve as the guidance for the language-guided editing baselines. Here, it shows that ours is better at capturing the patterns resembled in
the group of images representing implicit attributes. This Figure is a complete version for Figure 6 of the Main Text.

Method
Stanford Dogs CUB200 Idiap Replay Attack

CLIP ↑ FID↓ Unchanged ↑ CLIP ↑ FID↓ Unchanged ↑ CLIP ↑ FID↓ Unchanged ↑Score Ratio Score Ratio Score Ratio

Original Validation Set 16.66 97.23 100% 21.83 68.07 100% 18.41 77.05 100%
Edited Validation Set - Pix2Pix [3] 20.03 92.57 85.74% 22.87 64.04 82.31% 20.11 81.34 84.66%
Edited Validation Set - LEDITS [20] 18.62 100.56 79.45% 21.99 77.21 73.09% 18.87 87.04 73.40%
Edited Validation Set - Cycle [24] 18.77 95.66 87.46% 22.05 66.04 85.98% 19.55 78.15 87.36%
Edited Validation Set - FreePrompt [10] 19.74 97.90 83.66% 22.51 67.90 83.88% 20.08 76.00 81.39%
Edited Validation Set - SmartEdit [6] 18.23 93.99 85.81% 20.03 71.48 84.17% 18.99 72.72 84.27%
Edited Validation Set - CDS [12] 19.02 87.01 85.04% 21.06 64.82 82.05% 19.64 71.46 86.72%
Edited Validation Set - Hive [27] 19.92 95.03 84.44% 20.39 67.00 80.74% 20.11 69.71 82.12%
Edited Validation Set - MDC 19.94 78.24 88.16% 23.58 55.13 85.75% 20.37 40.81 90.12%

Table 4. Comparisons of Editing Capability with Quantitative Evaluation between MDC and language-guided editing baselines. Like
what we did in Section 4.3 of the Main Text, we compute the CLIP Score between each linguistic attribute’s description and every image
of corresponding edited validation set (or original validation set). We compute the FID Score between the edited sets (or original set)
and corresponding classified group of validation error images containing the implicit patterns to measure the distribution distance, which
represents the editing capability for implicit attributes. For unchanged ratio, we compute the ratio of CLIP prediction, between every image
in original and edited validation sets, for appearance-related attributes in Table 7 to 9, keeping unchanged during editing. Here, it shows
MDC is superior in implicit attribute editing, competitive in linguistic attribute editing and keeping unrelated attributes unchanged. This
Table is a complete version for Table 3 of the Main Text.

ages show superior performance than using the data solely
from the validation set. We can even find that the HTER
performance of MDC surpasses the “Train + Validation”
baseline by absolute 1.55% and 0.71% on CLIP ViT-B/16
and DINOv2-B/14 architectures respectively even with only
one attribute is selected.

3.2. Augment with More (Top 3, 4) Attributes

To further evaluate the effectiveness of our discovered causal
attributes, we select more attributes (Top 3 and Top 4) from
Figure 3 and 4 of the Main Text to conduct targeted edit-
ing for model correction. The model correction strategies
are kept the same as main text (replacing part of the train-
ing data). From Table 2 and 3, we can observe MDC still
achieves consistent better results than both the “Original
Training Set” and LANCE baselines. However, the rate of
increase by adding third and fourth attributes drops signif-
icantly compared with adding the first two attributes, and

sometimes the performance even regresses, e.g. adding Top
4 attributes (91.80%) getting worse performance than only
adding top 2 attributes (91.88%) for ViT-L/14 classifier on
CUB200 dataset for MDC. This is possibly because as the
number of selected attributes increases, the intensity of their
causality decreases and making the augmented training set
lack of adequate causal information of error patterns.

4. Additional Editing Capability Evaluation

4.1. Additional Comparisons with More Baselines

Like what we did in Section 4.3 of the Main Text, we com-
pare with more language-guided editing baselines from both
qualitative perspective in Figure 2 and quantitative perspec-
tive in Table 4. Our method is more effective in simulating
implicit attributes, while achieving competitive performance
with the baselines in linguistic attribute editing and keeping
unrelated attributes unchanged.



Figure 3. Ablation Study for Language vs. Soft Token Guided
Editing for implicit attribute simulation, i.e. “orange hue style”.
For language-guided editing, we only change the guidance from
soft tokens to the generated description. Here, it shows that the
soft token guided editing method is superior in simulating implicit
attribute represented by a group of images. The background of soft
token guided images is closer to images in the classified group (top
left corner).

Figure 4. Ablation Study for Language vs. Soft Token Guided
Editing for implicit attribute simulation, i.e. “neutral background”.

Dataset
“orange hue style” in Figure 3 “neutral background” in Figure 4

FID↓ Unchanged ↑ FID↓ Unchanged ↑Ratio Ratio

Original Validation Set (Idiap) 94.61 100% 71.10 100%
Edited Idiap - MDC, Language 68.28 91.15% 50.19 87.41%
Edited Idiap - MDC, Soft Token 37.99 91.23% 29.83 88.19%

Table 5. Ablation Study for Language vs. Soft Token Guided
Editing with Quantitative Evaluation for implicit attribute simu-
lation, i.e. “orange hue style” in Figure 3 and “neutral background”
in Figure 4. We compute the FID Score between the Idiap edited
validation sets and corresponding classified group of Idiap error
images containing the implicit “orange hue style” and “neutral
background” patterns to measure the distribution distance between
them. For unchanged ratio, we compute the ratio of CLIP predic-
tion, between every image in original and edited validation sets, for
appearance-related attributes in Table 9, keeping unchanged. Here,
it shows that the soft token guided editing method is superior in
simulating implicit attributes.

Figure 5. Failure Cases, i.e. removing the “orange hue” pattern
from the original image. The randomly selected group of images are
leveraged for the guidance of our method, while the text guidance
is used for guiding baselines. Neither the baselines nor our method
remove the pattern successfully. However, our method indeed
reduces the “orange hue” pattern to some extent.

4.2. Ablation Study for Soft Token Guided Editing

In previous sections, we have verified that MDC is superior
than language-guided editing baselines in simulating implicit
attributes. However, due to the differences in architecture,
training strategy, and other components, comparing with
other language-guided editing methods can not fully validate
soft token guided editing is better than the language guided
one. To make an accurate comparison, we conduct ablation
study for soft token guided editing vs. language guided
editing. Specifically, in order to simulate implicit patterns,
we only change the guidance from the optimized soft tokens
to the generated text descriptions (presented in column 4 of
Figure 8 to 10).

From several examples in face anti-spoofing domain in
Figure 3 and 4, we can observe the soft token guided edited
images are visually closer to the patterns resembled in the
group of images than the edited ones via language. Specif-
ically, in Figure 3, the language guided images failed to
remove the background while the soft token guided images
successfully did. To quantitatively evaluate whether the
pattern “orange hue style” and “neutral background” are sim-
ulated correctly, we compute the FID Score and “Unchanged
Ratio” like what we did in previous sections. We leverage
the classified groups of images obtained in causal attribute
discovery stage and compute their distribution distance using
FID with original or counterfactual edited datasets. From
the results in Table 5, the edited sets guided by soft tokens
are distribution-wised closer to group of images with desired
implicit patterns. For the unchanged ratio, we compute the
ratio of CLIP prediction for appearance-related attributes in
Table 9 keeping unchanged during editing.



Figure 6. Test Set-Level Robustness Evaluation for Corrected
Classifier to the “overall orange color” implicit image pattern in
(a) dog domain and the “black plumage” linguistic attribute in (b)
bird domain selected from Figure 3 of the Main Text. Original
classifier is trained under the training parts of Tsinghua Dogs and
NABirds, and the training set of corrected classifier is augmented
with “overall orange color” and “black plumage” pattern respec-
tively. Specifically, to select images from test sets with desired
pattern, we compute the CLIP Score between the text description
and the whole test sets, rank in a descending order, and choose
top 10% images to evaluate two classifiers. Here, it shows after
retraining classifiers with augmented training set containing desired
pattern, the robustness to such patterns improves significantly.

4.3. Failure Cases
As shown in Figure 5, MDC as well as the baselines fails
in simulating some patterns, i.e. removing the “orange hue”
from the image. Specifically, we randomly select a group
of images for MDC to simulate. After editing, we expect to
remove such “orange hue” effect from the original image.
However, MDC fails though such pattern is reduced to some
extent.

5. Additional Set Level Robustness Evaluation
In Figure 5 of the Main Text, we evaluate the robustness
of corrected classifier from different perspectives. In this
section, we conduct further set-level robustness evaluation
over real test images of animal species domains, i.e. the
test parts of Tsinghua Dogs and NABirds. As shown in
Figure 6, we select Top 1 attributes from Figure 3 of the Main
Text for model correction and classifier retraining, which
the strategies are kept the same as main text. To evaluate
whether the corrected classifier become more robust to the
pattern of selected attributes, we attempt to grab images
with such pattern from the test set. Specifically, we compute
the CLIP Score between the text description and the whole
test sets, rank in a descending order, and choose top 10%

images to evaluate. Results in Figure 6 demonstrate the
corrected classifier indeed become more robust to the images
with desired attribute patterns, verifying the usefulness and
effectiveness of our selected causal attributes.

6. More Successful Editing Cases
Our editing model can successfully respond to more editing
requests beyond the causal attributes discovered by our MDC
system. In Figure 7, we display some qualitative editing
results in bird domain. We can observe our edited images
successfully follow the text guidance, demonstrating the
capability of our editing model.

7. Experimental Setting Details

Additional Baselines. We select additional state-of-the-
art language-guided editing baselines, i.e. SmartEdit [6],
CDS [12], and Hive [27] for comparison.
Datasets Recapture. (1) Animal species classification: The
training parts of Stanford Dogs [8] and CUB200 [22] are
set as our training sets, corresponding testing parts as our
validation sets. The training parts of Tsinghua Dogs [29] and
NABirds [21] datasets are leveraged for targeted editing and
the corresponding test parts are served as our test sets. (2)
Face anti-spoofing: Combining OULU-NPU [2] and CASIA-
MFSD [28] as training set, setting Idiap Replay Attack [4]
as validation set, using MSU-MFSD [23] as test set.

Model Stanford Tsinghua CUB200 NABirdsDogs Dogs
Our classifier 90.80% 88.20% 90.54% 91.99%
He et al. [5] - 88.03% 91.70% -
Xu et al. [25] 91.80% - 91.80% 90.80%

Table 6. Comparison of our Fine-Grained Classifiers with SO-
TAs on four animal species datasets. The results are reported in
Top-1 accuracy. Here, it shows our classifier achieves competitive
performance with SOTAs, setting a good baseline for diagnosis.

Implementation Details. 1) Classifier Training: To obtain
the classifier having competitive performance with state-of-
the-art works, in dog and bird domains, we leverage the top-
performing ImageNet-22K pre-trained ViT-L/14 model 1 and
fine-tune it with training sets for 100 epochs. We compare
our trained classifier with some state-of-the-art works [5, 25]
in Table 6. For the face anti-spoofing domain, we fine-tune
a pretrained ViT-B/16 model from CLIP [18] for 500 steps
with the batch size as 32. 2) Candidate Attribute Discovery.
We set Nmax as 20 and unsupervised clustering method as
K-Means and K equals 3. 3) Soft Token Learning. We
set q as 3 and λreg as 0.85 [26] and the optimizing process
only takes approximately 5 minutes with 1 A100 GPU. 4)
Editing Model Training. Following [17], in fine-grained

1timm/eva02_large_patch14_448.mim_m38m_ft_in22k_in1k



Figure 7. Some Qualitative Editing Examples beyond the causal attributes discovered by MDC in bird domain. Here, it shows our editing
model owns the capability in response to other text guidance request.

classification domain, we firstly conduct a pre-training step
on ImageNet-22K for 400M steps for better initialization,
while for face anti-spoofing domain, we directly pick up
a checkpoint pre-trained on FFHQ [7]. During the model
training stage, we freeze the U-Net, update all mapping
networks simultaneously, and set the semantic encoder as
trainable to increase representation power and adaptability
to various attribute semantics. We train the model for 300K
steps with batch size as 1, which takes around 12 hours with
32 A100 GPU. We set s as 1, Tedit as 10 for training, 200 for
inference.

8. Candidate Attributes Discovery Details
In this section, we provide more details of our candidate
attribute discovery stage. After categorizing the error cases
into small sub-groups using our attribute discovery model
(ADM) [1] and further merging these sub-groups into larger
K groups of images, we prompt ADM with two more re-
quests as mentioned in Section 3.1 of the Main Text to ac-
quire the linguistic attributes. From Figure 8 to 10, we can
observe the details of linguistic attributes discovery from
implicit group of images in dog, bird, and face anti-spoofing
domains. Specifically, from classified image groups, we
initially leverage ADM to summarize the image pattern into
“one phrase” (column 2). Then, we prompt ADM to list
some other types of reasons (column 3) that could cause
misclassification based on that phrase. In the last column of
each figure, we also list the generated descriptions for every
image patterns.

9. Appearance-Related Attributes Details
To evaluate whether other unrelated attributes remain un-
changed during editing, we compute the ratio of CLIP’s

Category Attributes

Coat Color Black, Brown, White, Grey, Golden, Spotted, Brindle
Coat Length Short, Medium, Long, Curly, Wiry
Coat Texture Smooth, Rough, Silky, Dense

Size Small, Medium, Large, Giant
Body Shape Stocky, Slender, Muscular, Lean

Ear Type Floppy, Erect, Semi-erect, Cropped
Tail Type Long, Short, Curled, Straight, Docked
Eye Color Brown, Blue, Hazel, Amber, Mismatched

Snout Shape Short, Medium, Long
Leg Length Short, Long, Proportional

Facial Expression Alert, Friendly, Serious, Droopy
Markings Spots, Stripes, Patches, Masks, Saddle-like markings

Table 7. Appearance-Related Attributes for Dog Domain.

Category Attributes

Body Size Small, Medium, Large
Plumage Color Black, White, Brown

Plumage Pattern Stripes, Spots, Streaks
Plumage Texture Glossy, Dull, Fluffy

Beak Small, Medium, Large
Tail Forked tail, Rounded tail, Pointed tail

Wings Size Small, Medium, Large
Wings Shape Rounded and short, Long and narrow, Broad

Leg shape Perching, Grasping, Wading
Eye color Dark brown or black, Bright yellow, Red or reddish-orange
Posture Upright, Horizontal, Crouched

Table 8. Appearance-Related Attributes for Bird Domain.

prediction keeping unchanged between the original and coun-
terfactual edited validation sets for these attributes. Specifi-
cally, for dog and bird domain, we prompt MLLMs to gener-
ate dozens of appearance-related attributes listed in Table 7
and 8. For face anti-spoofing domain, we directly leverage
40 CelebA [11] attributes shown in Table 9.

For example, if we want to compute the ratio of attribute
“eyeglasses” unchanged between the original and one coun-
terfactual edited set, we pick one image from the original
set and construct the input text of CLIP as [“a photo of a



Figure 8. Details of Linguistic Attributes Discovery from Implicit Group of Images in the validation set, i.e. Stanford Dogs test set, of
dog domain and corresponding generated descriptions (column 4), which are further used as the guidance for the language-guided editing
baselines. From classified image groups, we initially leverage ADM to summarize the image pattern into “one phrase” (column 2). Then, we
prompt ADM to list some other types of reasons (column 3) that could cause misclassification based on that phrase.

Figure 9. Details of Linguistic Attributes Discovery from Implicit Group of Images in the validation set, i.e. CUB200 test set, of bird
domain and corresponding generated descriptions.

person”, “a photo of a person with eyeglasses”]. We then
compare the CLIP argmax predictions for this original image
and corresponding paired image from counterfactual set us-
ing the same CLIP text input. If the predictions are the same,
we consider this “eyeglasses” appearance-related attribute as
unchanged for this image. We iterate all appearance-related
attributes, all images in the dataset and average the ratio
as the final score for these paired datasets. Corresponding
results are shown in Table 3 of the Main Text, Table 4 and 5.

CelebA [11] Attributes

5’o Clock Shadow, Arched Eyebrows, Attractive, Bags Under Eyes,
Bald, Bangs, Big Lips, Big Nose, Black Hair, Blond Hair,

Blurry, Brown Hair, Bushy Eyebrows, Chubby, Double Chin,
Eyeglasses, Goatee, Gray Hair, Heavy Makeup, High Cheekbones,
Male, Mouth Slightly Open, Mustache, Narrow Eyes, No Beard,

Oval Face, Pale Skin, Pointy Nose, Receding Hairline,
Rosy Cheeks, Sideburns, Smiling, Straight Hair, Wavy Hair,

Wearing Earrings, Wearing Hat, Wearing Lipstick,
Wearing Necklace, Wearing Necktie, Young

Table 9. Appearance-Related Attributes for Face Domain.



Figure 10. Details of Linguistic Attributes Discovery from Implicit Group of Images in the validation set, i.e. Idiap, of face anti-spoofing
domain and corresponding generated descriptions.

10. Limitations & Future Work
Despite the superior performance, MDC has several limita-
tions. Firstly, our editing model lacks of zero-shot inference
capability. Currently, for each specific task, MDC requires
to retrain the editing model and learn multiple mapping net-
works, each taking charge of one specific editing request.
In the future, we may construct a universal editing model,
trained using a much larger dataset, e.g. LAION-5B [19] or
built upon a more powerful foundation generation model, e.g.
SDXL [15]. With such editing model, we eliminate the need
of retraining with different training data for every specific
task. Another limitation is though MDC is orthogonal to any
computer vision task, we only verify its capability in image
classification. Therefore, another future work is to employ
MDC to other computer vision tasks, e.g. object detection,
segmentation. In this way, we can adopt our system to more
computer vision tasks and enhance the performance of rele-
vant models.
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