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1. Reproduction Statement
1.1. Code Implementation
To facilitate the reproduction of our method, we
present the core components of our approach here.
Specifically, Listing 1 showcases the key code used
during the collaborative training process, while
Listing 2 provides the implementation details of our
adaptive weighting strategy.

1 # Input paired large and small
feature embeddings

2 large_logits, small_logits,
large_proj, small_proj = model(
large_image, large_text,
large_timeseries, small_feat)

3 # Compute losses
4 if model.weight_type == ’learnable’:
5 large_weight, small_weight = model

.learnable_weight()
6 logits = large_weight *

large_logits + small_weight *
small_logits

7 task_loss = task_criterion(logits,
target)

8 sim, contrastive_loss = model.
contrastive_loss(large_proj,
small_proj)

9 else:
10 sim, contrastive_loss = model.

contrastive_loss(large_proj,
small_proj)

11

12 large_weight, small_weight = model
.get_adaptive_weight(sim.mean()
)

13

14 task_loss = task_criterion(
large_weight * large_logits +
small_weight * small_logits,
target)

15 loss = task_loss.mean() +
contrastive_weight *
contrastive_loss.mean()

Listing 1. Collaborative Training Implementation

During a training epoch, apart from the Learnable
Weight strategy, we first compute the contrastive
loss to obtain the similarity scores of the features
from large models collaboration and small model.
Based on the different weight computation methods
(shown in Listing 2), the task loss is then calculated
and used as the weight for decision fusion.

1 # Learnable Weight
2 def learnable_weight(self):
3 # Ensure weights sum to 1
4 fusion_weights = self.

fusion_softmax(self.
fusion_weights)

5 large_weight = fusion_weights[0]
6 small_weight = fusion_weights[1]
7 return large_weight, small_weight
8

9 # Inverse Contrastive
10 def inverse_weight(self, sim,

temperature=1.0,
11 alpha=1.0):
12 # Calculate base weights
13 scaled_loss = sim / temperature
14 inverse_loss = 1.0 / (alpha *

scaled_loss + 1e-6)
15

16 # Normalize weights
17 large_weight = torch.sigmoid(sim)
18 small_weight = inverse_loss / (

inverse_loss + 1)
19

20 # Ensure weights sum to 1
21 total_weight = large_weight +

small_weight
22 large_weight = large_weight /

total_weight
23 small_weight = small_weight /

total_weight
24

25 return large_weight, small_weight
26

27 # Gaussian Contrastive
28 def gaussian_weight(self, sim, sigma

=1.0):



29 small_weight = torch.exp(-sim**2 /
(2 * sigma**2))

30 large_weight = 1 - small_weight
31 return large_weight, small_weight
32

33 # Threshold Contrastive
34 def threshold_weight(self, sim,

threshold=0.5,
35 slope=10):
36 x = sim - threshold
37 large_weight = 0.5 + 0.5 * torch.

tanh(slope * x)
38 small_weight = 1 - large_weight
39 return large_weight, small_weight

Listing 2. Adaptive Weight Strategies Implementation

1.2. Model Architecture and Configuration

Large Single-Modal Models Our framework
leverages several state-of-the-art pre-trained large
models to get large embeddings with different
modalities of medical data. For each modality,
we carefully select models that have demonstrated
strong performance in their respective medical do-
mains. Tab. 1 presents the specific models em-
ployed for each modality and their corresponding
feature dimensions. These models serve as our
modality-specific encoders, providing rich repre-
sentations that capture the unique characteristics of
each data type. The diverse input dimensions re-
flect the varying complexity and information den-
sity across different medical data modalities, which
are later unified through our MoME module.

Modality Model Output Dimension

X-ray Images DINOv2 1536
Whole Slide Images (WSI) CLAM + UNI 1024
CT Scans Merlin 512
Time Series MOIRAI 1024
Medical Text Me-LLaMA-13B 5120
Clinical Data BioMistral 4096

Table 1. Model Architecture and Configuration

MoME Fusion Module Configuration The
Mixture-of-Modality-Experts (MoME) Fusion

module processes these multi-modal features
through a unified hidden dimension calculated
as dsmall//3, where dsmall is the hidden dim of
small model. The final output dimension is set
to dsmall, which aligns with the feature dimension
of the small model pathway to enable effective
collaborative learning.

Training Configuration We conduct extensive
experiments across multiple medical tasks from
two datasets: MIMIC-IV-MM (mortality predic-
tion, long-stay prediction, and readmission predic-
tion) and MMIST (Vital-12 prediction). Through
careful hyperparameter optimization, we identify
the optimal configuration for each task. Tab. 2 sum-
marizes these task-specific parameters, including
the contrastive loss weight (λ), projection feature
dimension (d), inverse temperature (τ ), inverse al-
pha (α), Gaussian sigma (σ), threshold value (t),
and threshold slope (sl).

Parameter MIMIC-IV-MM MMIST ccRCC

Mortality Longstay Readmission Vital-12

λ 0.59 0.50 0.67 0.50
d 2048 256 2048 128
τ 0.59 0.50 0.78 0.07
α 0.71 1.00 0.41 1.00
σ 0.84 1.00 0.66 0.10
t 0.57 0.60 0.94 0.15
sl 9.80 10.00 19.76 10.00

Table 2. Optimal Training Configuration for Different
Tasks

1.3. Ablation Studies on Hyperparameters
Configuration

To investigate the impact of different hyperparam-
eters on model performance, we conduct compre-
hensive ablation studies on λ and d. Tab. 3 shows
the fixed parameter settings used during these anal-
yses. For each task, we maintain these parameter
values constant while varying the target parameter
(λ or d) to ensure controlled experimental condi-
tions.



Parameter Task

Mortality Long-stay Readmission

Analyzing λ:
d 128 128 128
τ 1.0 1.0 1.0
α 1.0 1.0 1.0
σ 0.2 0.2 0.2
t 2.5 2.5 2.5
sl 10 10 10

Analyzing d:
λ 0.5 0.5 0.5
τ 1.0 1.0 1.0
α 1.0 1.0 1.0
σ 0.2 0.2 0.2
t 2.5 2.5 2.5
sl 10 10 10

Table 3. Other hyperparameter Settings for Ablation
Studies of hyperparameter λ and d

2. Broader Impacts
The widespread adoption of large medical AI mod-
els has been significantly hindered by two major
challenges: extensive computational requirements
and limited availability of paired multi-modal med-
ical datasets. While many healthcare institutions
lack access to high-end computing infrastructure
(such as 80GB A100 GPUs) necessary for train-
ing and fine-tuning large models, they also struggle
with insufficient paired multi-modal training data
for effective model development. AdaCoMed ad-
dresses both challenges simultaneously: it enables
effective multi-modal medical diagnosis on more
accessible hardware platforms (such as consumer-
grade RTX 4090 GPUs), while leveraging the rich
medical knowledge already encoded in existing
large single-modal models, rather than solely rely-
ing on limited paired multi-modal datasets.

Beyond computational and data efficiency, our
approach demonstrates significant implications for
healthcare democratization and accessibility. By
reducing both hardware requirements and depen-
dency on paired multi-modal training data, Ada-
CoMed makes state-of-the-art diagnostic capabil-
ities more accessible to a broader range of med-

ical facilities. Our framework effectively trans-
fers knowledge from well-trained large models to
more efficient architectures, allowing healthcare
providers to benefit from the extensive medical
knowledge captured by these models without the
need for massive paired dataset collection or high-
end computing resources. This could lead to more
equitable access to AI-assisted medical diagnos-
tics across different regions and healthcare systems,
particularly benefiting institutions with limited data
collection capabilities.

3. Limitations and Future Explorations

Our work currently faces several limitations. First,
the diagnostic model remains a black box, lack-
ing interpretability analysis for multimodal med-
ical data, which limits our understanding of how
the model arrives at its decisions. Additionally, the
model’s performance on tasks with highly imbal-
anced data is not yet sufficient for clinical applica-
tion, as it struggles with robustness in these chal-
lenging scenarios. In the future, we plan to ad-
dress these limitations by conducting interpretabil-
ity studies and validating the model on more real-
world medical data through collaborations, aiming
to enhance its clinical reliability and generalizabil-
ity.

4. Dataset

4.1. Dataset Statistic

Tab. 4 summarizes the key characteristics of the
datasets employed in our study, encompassing task
specifications, data distributions, and modality in-
formation.

Dataset Task Modalities Subjects Pos:Neg

MIMIC-IV-MM
Mortality

XRay, Note, Time
11,483 1:6.6

Longstay 10,069 1.5:1
Readmission 11,483 1:22.5

MMIST ccRCC 12-month Survival CT, WSI, Clinical 248 15:1

Table 4. Detailed characteristics of the experimental
datasets, including task types, input modalities, number
of subjects, and class distribution ratios.



4.2. Dataset Preprocessing
We carefully preprocess each modality in our
datasets to ensure optimal model performance:
X-rays Processing For X-ray images, we imple-
ment a standardization pipeline that maintains as-
pect ratio while ensuring consistent dimensions.
This involves zero-padding to achieve uniform di-
mensions of 256×256 pixels. Our training augmen-
tation includes dynamic cropping to 224×224 re-
gions and pixel value normalization to ensure sta-
ble model training.
Text Processing Clinical notes undergo compre-
hensive preprocessing to improve textual quality.
This includes removing line breaks, standardizing
whitespace, and text normalization through tok-
enization.
Timeseries Processing We extract and organize
Electronic Health Records (EHR) into structured
time series data to capture the temporal evolution of
patient conditions. The demographic features are
processed through a systematic categorization ap-
proach, including discretizing continuous variables
into meaningful bins. For vital signs, we select key
physiological indicators comprising both numerical
and categorical measures. Laboratory tests are cu-
rated to focus on the most clinically relevant param-
eters, while procedure records are standardized to
capture major clinical interventions. This compre-
hensive processing ensures all clinical variables are
in a consistent, analyzable format while preserving
their medical significance.
Whole Slide Images (WSI) Processing For pro-
cessing large single-modal model inputs, we fol-
low the CLAM framework to extract features from
WSI images. Due to the high resolution of WSI im-
ages, CLAM performs segmentation and patching
before feeding the data into the UNI model. By de-
fault, we set the step size and patch size to 256. For
data processing of small multimodal model inputs,
we directly utilize the preprocessed representations
provided by MMIST ccRCC dataset.
CT Scans Processing As Merlin supports the pro-
cessing of 3D CT images, we apply it directly to ex-
tract features from CT scans without additional pre-
processing. Since the MMIST ccRCC dataset pro-
vides multiple CT scans for a single sample, we use

the scan recommended by the dataset contributors.
For data processing of small multimodal model in-
puts, we also directly utilize the preprocessed rep-
resentations provided by MMIST ccRCC dataset.
Clinical Data Processing The clinical data in the
MMIST ccRCC dataset includes various numeric
attributes. Since TableLLM accepts only text in-
puts, we convert the clinical data into text using the
following prompt: ’The patient is a male/female of
Asian/Black or African American/Hispanic or Lati-
no/White/other race, diagnosed at age #age#, who
has a/no VHL mutation and a/no PBMR1 mutation
with/without a TTN mutation. Tumor characteris-
tics include tumor stage #stage# with node involve-
ment at stage #stage# and pathological metastasis
at stage #stage#. The overall tumor stage is #stage#
and the tumor grade is #grade#.’

For data processing of small multimodal model
inputs, we process the clinical data into embed-
dings. Specifically, categorical embeddings are cre-
ated for attributes such as ’gender,’ ’cancer his-
tory,’ ’VHL mutation,’ ’PBMR1 mutation,’ ’TTN
mutation,’ and race categories (’Asian,’ ’Black or
African American,’ ’Hispanic or Latino,’ ’White,’
’other’). Ordinal embeddings are generated for at-
tributes like ’ajcc path tumor pt,’ ’ajcc path nodes
pn,’ ’ajcc clin metastasis cm,’ ’ajcc path metastasis
pm,’ ’ajcc path tumor stage,’ and ’grade.’ Numeri-
cal embeddings are used for ’age diag.’

4.3. Implementation of Downstream tasks
Mortality Mortality prediction serves as a crucial
clinical prognostic task in intensive care settings.
This task aims to forecast in-hospital mortality by
predicting whether a patient will survive their hos-
pital stay. Specifically, we leverage multimodal
clinical data collected during the first 48 hours post-
admission, to generate a binary classification out-
come indicating the patient’s survival status at dis-
charge. This early prediction capability is particu-
larly valuable for clinical decision-making and re-
source allocation, as it enables healthcare providers
to identify high-risk patients and implement timely
interventions during the critical initial period of
hospitalization.
Longstay The length of patient stay (Longstay),



defined as the duration between admission and dis-
charge. We formulate this as a binary classification
task to predict extended hospitalizations. Specif-
ically, utilizing multimodal data from the first 48
hours of admission, our models aim to identify
patients likely to require prolonged hospitalization
(>7 days). To establish a more distinct classifica-
tion boundary and reduce ambiguity in our analy-
sis, we excluded cases with hospital stays shorter
than 3 days. The prediction outcome is binary,
where positive cases represent stays exceeding 7
days, and negative cases indicate shorter durations
(3-7 days). This predictive capability is particularly
valuable for hospital administrators and clinicians,
as early identification of potentially extended stays
enables more efficient resource allocation and care
planning.
Readmission Readmission, defined as an un-
planned return to hospital within 30 days of dis-
charge, represents a significant healthcare quality
indicator. We formulate this as a binary classifi-
cation task using multimodal data collected during
the first 48 hours of the initial hospitalization. The
model aims to predict whether a patient will re-
quire readmission within 30 days following their
discharge. This early prediction capability is par-
ticularly valuable for healthcare providers, as it en-
ables the identification of high-risk patients and the
implementation of preventive interventions before
discharge, potentially reducing unnecessary read-
missions and improving patient care quality.
Vital-12 Vital 12 is a task aimed at predicting pa-
tient survival within 12 months, representing a crit-
ical indicator of long-term outcomes in healthcare.
We formulate this as a binary classification task
using multimodal data collected during the initial
hospitalization period. The model predicts whether
a patient will survive beyond 12 months after their
initial diagnosis.

5. Data ratio Experiments
While we presented the detailed analysis of the
longstay prediction task in the main text, we con-
ducted data ratio experiments across all tasks in
the MIMIC-IV-MM dataset. Here, we report the
results for the other two critical tasks: mortality

(Fig. 1) and readmission (Fig. 2) prediction. These
results demonstrate the models’ performance and
robustness under different data availability scenar-
ios, complementing our main findings from the
longstay task analysis.

6. Stability Experiments
To evaluate the robustness and reliability of our
proposed model, we conducted stability experi-
ments on the MIMIC-IV-MM dataset. As shown
in Tab. 5, we performed five independent runs
using identical parameter settings and calculated
the mean and standard deviation for each metric.
The results demonstrate strong stability across all
three tasks (mortality prediction, longstay predic-
tion, and readmission prediction) and evaluation
metrics. The consistently small standard deviations
across all metrics suggest that our model produces
reliable and reproducible results regardless of ran-
dom initialization, indicating the robustness of our
approach.



Figure 1. Performance comparison of different methods on different training data ratios of MIMIC-IV-MM Mortality
task. Each subplot represents the performance of various training data ratios (10%, 30%, 50%, 70%). The radial axes
show the performance value for each metric, ranging from 0 to 0.8 with intervals of 0.2.

Figure 2. Performance comparison of different methods on different training data ratios of MIMIC-IV-MM Readmission
task. Each subplot represents the performance of various training data ratios (10%, 30%, 50%, 70%). The radial axes
show the performance value for each metric, ranging from 0 to 0.8 with intervals of 0.2.

Task Acc Auroc Auprc mAP mAR mF1

Mortality 0.8502±0.0066 0.7948±0.0058 0.3636±0.0022 0.6448±0.0161 0.6334±0.0128 0.6386±0.0143
Longstay 0.6792±0.0039 0.7316±0.0009 0.7774±0.0026 0.6696±0.0026 0.6702±0.0018 0.6698±0.0024

Readmission 0.9390±0.0045 0.6054±0.0076 0.0688±0.0063 0.5354±0.0013 0.5186±0.0036 0.5224±0.0031

Table 5. Stability experiment on the MIMIC-IV-MM dataset. Each value represents the mean ± standard deviation from
five runs using the same set of parameters to evaluate the stability of our model.
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