
Parametric Point Cloud Completion for Polygonal Surface Reconstruction

Supplementary Material

Our supplementary materials provide visual demonstra-
tions (Sec. A), instructions for reproducing our results
(Sec. B), detailed implementation insights (Sec. C), and ex-
tended experimental analyses that augment the findings in
the main paper (Sec. D).

A. Video

The accompanying video, available on our project page1,
highlights the motivation behind our work, illustrates its key
ideas, and demonstrates the reconstruction results.

B. Reproducibility

The code and demo for our method are available in a public
GitHub repository linked from the same project page1. De-
tailed instructions for setting up the environment and run-
ning the demo are provided in the README.md file.

C. Implementation Details

C.1. Dataset

We curated polygonal surface meshes from the ABC
dataset [20] to establish a consistent benchmark for evaluat-
ing polygonal surface reconstruction. We include only ob-
jects composed entirely of planar surfaces, excluding those
with multiple parts or non-watertight geometries. The re-
sulting dataset comprises 15,339 CAD models. The dis-
tribution of face counts is shown in Fig. S1. Each input
point cloud contains 2,048 points, while the ground truth
point cloud comprises 8,192 points. For a fair comparison
with voxel-based methods like BSP-Net [6] and SECAD-
Net [23] (Sec. 4.3), the input point clouds are aligned with
voxel representations. This alignment involves masking
voxels based on their visibility from a selected viewpoint,
excluding occluded voxels. Fig. S2 illustrates this align-
ment between point clouds and their corresponding voxel
representation.

C.2. Handling Failure Cases

In cases of reconstruction failure (e.g., no geometry gener-
ated), metrics are calculated against a bounding box with a
diagonal length of 1. This ensures a fair evaluation by pe-
nalizing failures in a controlled manner, mitigating potential
bias. Tab. S1 presents the results of a sanity check where all
samples are treated as failures.

1https://parametric-completion.github.io

#f

Figure S1. Face count distribution in the dataset.

Voxels

Points

Figure S2. Alignment between points and voxels. This align-
ment ensures consistent representations of incomplete data.

Table S1. Sanity check results. “San.” refers to cases where the
normalized bounding box is used as the output geometry, ensuring
unbiased metric calculation.

Method CD ↓ HD ↓ NC ↑

San. 16.36 22.06 0.550
PaCo (ours) 1.87 4.09 0.943

C.3. Hyperparameters
PaCo is implemented in PyTorch and optimized using the
AdamW optimizer with an initial learning rate of 10−4, a
weight decay of 5 × 10−4, and a learning rate decay of 0.9
every 20 epochs. The encoder and decoder depths are set to
8 and 12, respectively. For ablation studies (Sec. 4.6), the
encoder depth is set to 6 and the decoder depth to 8 to reduce
computational complexity. The encoder produces 128 point
proxies, and the number of plane proxies K after padding



is set to 20. A total of 40 queries (M ) are used. During
inference, we select primitives with confidence κσ̂(i) > 0.7.
For the loss terms in Eq. (10), we empirically set β2 = β4 =
20, and β3 = 2. To address class imbalance, we set

β1 =

{
0.4, if ci = ∅,
1, otherwise.

(S1)

All the competing methods [4, 6, 8, 14, 23, 40, 42, 46–48]
and reconstruction solvers [1, 26, 32] are used with their
default settings.

D. Additional Analysis
D.1. Evaluation on Primitive Parameters
In the main paper, we use normal consistency (NC) as one
of the metrics to evaluate the quality of the reconstruction
results. The NC is calculated from surface-sampled points
and is an indirect indicator of the accuracy of the primitive
parameters recovered by parametric completion. To com-
plement the indirect surface-based evaluation (see Sec. 4.1),
we introduce a direct metric, NCprim, defined as the average
normal consistency between the predicted and ground truth
primitives, to quantify the accuracy of the recovered primi-
tive parameters. For the competing methods, GoCoPP [45]
is used to extract primitives from the completed points. As
shown in Tab. S2, our method achieves the highest primitive
normal consistency (NCprim = 0.976) among all methods.

Table S2. Evaluation on primitive normal consistency. PaCo
produces planar primitives with the highest NCprim.

Method NCprim ↑

PCN [48] 0.605
FoldingNet [42] 0.849
GRNet [40] 0.752
PoinTr [46] 0.863
AdaPoinTr [47] 0.930
ODGNet [4] 0.933
PaCo (ours) 0.976

D.2. Surface Complexity
Fig. S3 presents the performance of our method with re-
spect to surface complexity. As the geometric complex-
ity increases, CD tends to rise while NC declines. This
trend arises from the inherent challenges of learning com-
plex structures and the underrepresentation of highly com-
plex samples in the dataset (see Fig. S1).

D.3. Point Density
Since competing methods often rely on point density for im-
proved metrics, we normalize all outputs by down-sampling
or up-sampling to a consistent total of 8,192 points. This

#f

Figure S3. Performance concerning surface complexity. As the
complexity increases, CD tends to rise while NC declines.

ensures a fair comparison and prevents metric variations
from being attributed to point count differences. Tab. S3
shows that this normalization has a negligible impact on
performance for PaCo, demonstrating its robustness in re-
covering accurate parametric representations independent
of point density.

Table S3. Impact of number of points for PaCo. “S” indicates
sampling to 8,192 points. The number of points has no significant
impact on the reconstruction.

Solver S CD ↓ HD ↓ NC ↑ FR ↓

KSR [1] 1.91 4.14 0.940 0.25
✓ 1.92 4.19 0.945 0.28

COMPOD [32] 1.94 4.42 0.940 0.25
✓ 1.95 4.56 0.943 0.34

PolyFit [26] 1.87 4.09 0.943 0.48
✓ 1.93 4.48 0.941 0.63

D.4. Number of Proxies

We set the number of proxies to be greater than the maxi-
mum number of faces of the samples in the dataset. This
surplus allows the primitive selector to distinguish between
positive and negative primitives more effectively. Tab. S4
presents the results using different numbers of plane prox-
ies, where 40 proxies achieve the best performance. The
optimal number of proxies is likely correlated to the distri-
bution of face counts (see Fig. S1).

Table S4. Performance with different proxy numbers. Our
method performs the best with 40 proxies.

Num. Proxies CD ↓ HD ↓ NC ↑

30 2.75 6.98 0.906
40 2.11 5.26 0.941
50 2.64 6.86 0.908



D.5. Evaluation on Real Data
We evaluate PaCo on real airborne LiDAR point clouds for
building reconstruction to assess its transferability (Fig. S4).
Although PaCo was trained on the ABC dataset [20] and
fine-tuned with only 2,000 airborne LiDAR samples2, it
successfully reconstructs heavily occluded structures with-
out relying on explicit rules. This demonstrates its robust-
ness to noise and outliers and, notably, its ability to approx-
imate freeform surfaces using planar primitives.

Figure S4. Buildings reconstructed from real-world airborne
LiDAR data with noise and outliers. The fine-tuned PaCo model
generalizes to unseen airborne LiDAR data.

D.6. Inference Speed
Fig. S5 presents the inference latency comparisons across
different completion methods. PaCo achieves an average in-
ference time of 29.8 ms, nearly twice as fast as the strongest
competitor, ODGNet (53.6 ms), while reducing CD by 32%.
Notably, bipartite matching applies only during training and
does not affect inference.

0 10 20 30 40 50 60
Latency (ms)

2

4

6

8

10

12

14

C
D

PCN

FoldingNet GRNet
PoinTr

AdaPoinTr ODGNet
PaCo

Figure S5. Chamfer distance (CD) vs. inference latency. CD
is computed on meshes via the PolyFit solver, and latency is mea-
sured on an NVIDIA A40 GPU (excluding I/O).

2https://www.ahn.nl/


