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Supplementary Material

This supplementary material contains the following
parts:
• Implementation Details. Detailed descriptions of the

network architectures, baselines for part completion,
training and inference settings for all models used in Part-
Gen are provided.

• Additional Experiment Details. We describe the de-
tailed evaluation metrics employed in the experiments and
provide additional experiments.

• Additional Examples. We include more outputs of our
method, showcasing applications with part-aware text-to-
3D, part-aware image-to-3D, real-world 3D decomposi-
tion, and iteratively adding parts.

• Failure Case. We analyse the modes of of failure of Part-
Gen.

• Discussion. We discuss the compatibility of PartGen with
other reconstruction models and potential alignment is-
sues in part reassembling.

• Ethics and Limitation. We provide a discussion on the
ethical considerations of data and usage, as well as the
limitations of our method.

A. Implementation Details
We first provide network architectures and then we pro-
vide details of the training pipeline used in PartGen (Ap-
pendices A.3 to A.6). In addition, we provide the imple-
mentation details for the applications: for part composition
(Appendix A.7) and for part editing (Appendix A.8).

A.1. Network architectures

Diffusion Model. The architecture of the diffusion model
used in the paper is similar to [3], which contains an au-
toencoder to encode images and a U-Net for the denoising
process. Specifically, the autoencoder compresses the im-
ages into 8 channels with a compression ratio of 8. For
more details, please refer to [3].

Reconstruction Model. We use lightplaneLRM [1] as the
reconstruction model with 128 × 128 × 128 voxel grids.
The Splatter and Renderer components both use 3-layer
MLPs with a width of 32. For detailed implementation,
please refer to [1].

A.2. Baseline for part completion

We compare our PartGen (Ĵ = B(I ⊙M, I)) to four base-
lines: (1) directly use the reconstruction model Ψ to recon-
struct the 3D part without completing the multi-view part

image (Ĵ = I ⊙M ); (2) fine-tune Φ to complete the multi-
view part image without given the multi-view image of the
whole object (Ĵ = B(I⊙M)); (3) fine-tune Φ to only com-
plete 4 views one by one (Ĵv = B(Iv ⊙Mv, Iv)); (4) use
the groundtruth completed multi-view part image for 3D re-
construction (Ĵ = J).

A.3. Text-to-multi-view generator

We fine-tune the text-to-multi-view generator starting with
a pre-trained text-to-image diffusion model trained on bil-
lions of image-text pairs that uses an architecture and data
similar to Emu [3]. We change the target image to a grid of
2×2 views as described in Section 3.5 following Instant 3D
[7] via v-prediction [10] loss. The resolution of each view
is 512× 512, resulting in the total size of 1024× 1024. To
avoid the problem of the cluttered background mentioned
in [7], we rescale the noise scheduler to force a zero termi-
nal signal-to-noise ratio (SNR) following [8]. We use the
DDPM scheduler with 1000 steps [4] for training. During
the inference, we use DDIM [12] scheduler with 250 steps.
The model is trained with 64 H100 GPUs with a total batch
size of 512 and a learning rate 10−5 for 10k steps.

A.4. Image-to-multi-view generator

Building on the text-to-multi-view generator, we further
fine-tune the model to accept images as input conditioning
instead of text. The text condition is removed by setting it to
a default null condition (an empty string). We concatenate
the conditional image to the noised image along the spa-
tial dimension, following [2]. Additionally, inspired by IP-
adapter [16], we introduce another cross-attention layer into
the diffusion model. The input image is first converted into
tokens using CLIP [9], then reprojected into 157 tokens of
dimension 1024 using a Perceiver-like architecture [5]. To
train the model, we utilize all 140k 3D models of our data
collection, selecting conditional images with random eleva-
tion and azimuth but fixed camera distance and field of view.
We use the DDPM scheduler with 1000 steps [4], rescaled
SNR, and v-prediction for training. Training is conducted
with 64 H100 GPUs, a batch size of 512, and a learning rate
of 10−5 over 15k steps.

A.5. Multi-view segmentation network

To obtain the multi-view segmentation network, we also
fine-tune the pre-trained text-to-multi-view model. The in-
put channels are expanded from 8 to 16 to accommodate
the additional image input, where 8 corresponds to the la-



Input image Generated caption 

Input Target

> A red cylindrical 
cup with a smooth 
matte finish a flat 
bottom 

> A red necktie 
made of smooth 
shiny material

> A dark brown, 
tapered, wooden leg 
with a smooth, glossy 
surface and a pointed 
tip

> A dead tree trunk 
with a rough, brown 
texture and several 
thin, bare branches.

Input image Generated caption 

Figure A1. 3D part editing and captioning examples. The top
section illustrates training examples for the editing network, where
a mask, a masked image, and text instructions are provided as con-
ditioning to the diffusion network, which fills in the part based on
the given textual input. The bottom section demonstrates the input
for the part captioning pipeline. Here, a red circle and highlights
are used to help the large vision-language model (LVLM) identify
and annotate the specific part.

tent dimension of the VAE used in our network. We cre-
ate segmentation-image pairs as inputs. The training setup
follows a similar recipe to that of the image-to-multi-view
generator, employing a DDPM scheduler, v-prediction, and
rescaled SNR. The network is trained with 64 H100 GPUs,
a batch size of 512, a learning rate of 10−5, for 10k steps.

A.6. Multi-view completion network

The training strategy for the multi-view completion network
mirrors that of the multi-view segmentation network, with
the key difference in the input configuration. The number
of input channels (in latent space) is increased to 25 by in-
cluding the context image, masked image, and binary mask,
where the mask remains a single unencoded channel. Ex-
ample inputs are illustrated in Figure 5 of the main text. The
network is trained with 64 H100 GPUs, a batch size of 512,
a learning rate of 10−5, and for approximately 10k steps.

A.7. Parts assembly

When compositing an object from its parts, we observed
that simply combining the implicit neural fields of parts
reconstructed by the Reconstruction Model (RM) in the
rendering process with their respective spatial locations
achieves satisfactory results.

To describe this formally, we first review the rendering
function of LightplaneLRM [1] that we use as our recon-
struction model. LightplaneLRM employs a generalized
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Figure A2. Recall curve of different methods. Our method
achieve better performance comparing with SAM2 and its vari-
ants.

Emission-Absorption (EA) model for rendering, which cal-
culates transmittance Tij , representing the probability of a
photon emitted at position xij (the jth sampling point in the
ith ray) reaching the sensor. Then the rendered feature (e.g.
color) vi of ray ri is computed as:

vi =

R−1∑
j=1

(Ti,j−1 − Ti,j)fv(xij)

where fv(xij) denotes the feature of the 3D point xij ;
Ti,j = exp(−

∑j
k=0 ∆ · σ(xik)), where ∆ is the distance

between two sampled points and σ(xik) is the opacity at po-
sition xik, Ti,j−1 − Ti,j captures the visibility of the point.

Now we show how we generalise it to rendering N parts.
Given feature functions f1

v , . . . , f
N
v and their opacity func-

tions σ1, · · · , σN , the rendered feature of a specific ray ri
becomes:

vi =

R−1∑
j=1

N∑
h=1

(T̂i,j−1 − T̂i,j)w
h
ij · fh

v (xij).

where wh
ij = σh(xij)/

∑N
l=1 σ

l(xij) is the weight
of the feature fh

v (xij) at xij for part h; T̂i,j =



Input Object Part 1 Part 2 Part 3

> A dachshund 
dressed up in a 
hotdog costume

> A panda 
rowing a boat in 

a pond

Figure A3. More examples. Additional examples illustrate that PartGen can process various modalities and effectively generate or
reconstruct 3D objects with distinct parts.

exp(−
∑j

k=0

∑N
h=1 ∆·σh(xik)), ∆ is the distance between

two sampled points and σh(xik) is the opacity at position
xik for part h, and T̂i,j−1− T̂i,j is the visibility of the point.

A.8. 3D part editing

As shown in the main text and Figure 7, once 3D assets
are generated or reconstructed as a composition of differ-
ent parts through PartGen, specific parts can be edited us-
ing text instructions to achieve 3D part editing. To enable
this, we fine-tune the text-to-multi-view generator using
part multi-view images, masks, and text description pairs.

Example of the training data are shown in Figure A1 (top).
Notably, instead of supplying the mask for the part to be
edited, we provide the mask of the remaining parts. This
design choice encourages the editing network to imagine
the part’s shape without constraining the region where it has
to project. The training recipe is similar to multi-view seg-
mentation network.

To generate captions for different parts, we establish an
annotation pipeline similar to the one used for captioning
the whole object, where captions for various views are first
generated using LLAMA3 and then summarized into a sin-
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Composed ObjectInput 1 Part 2 Parts 3 Parts

> A chihuahua 
wearing a tutu

Figure A4. Iteratively adding parts. We show that users can iteratively add parts and combine the results of PartGen pipeline.

gle unified caption using LLAMA3 as well. The key chal-
lenge in this variant is that some parts are difficult to identify
without knowing the context information of the object. We
thus employ the technique inspired by [11]. Specifically, we
use red annulet and alpha blending to emphasize the part be-
ing annotated. Example inputs and generated captions are
shown in Figure A1 (bottom). The network is trained with
64 H100 GPUs, a batch size of 512, and the learning rate of
10−5 over 10,000 steps.

B. Additional Experiment Details

We provide a detailed explanation of the ranking rules ap-
plied to different methods and the formal definition of mean
average precision (mAP) used in our evaluation protocol.
Additionally, we report the recall at K in the automatic seg-
mentation setting.

Ranking the parts. For evaluation using mAP and recall at
K, it is necessary to rank the part proposal. For our method,
we run the segmentation network several times and concate-
nate the results into an initial set P of segment proposals.
Then, we assign to each segment M̂ ∈ P a reliability score
based on how frequently it overlaps with similar segments

in the list, i.e.,

s(M̂) =

∣∣∣∣{M̂ ′ ∈ P : m(M̂ ′, M̂) >
1

2

}∣∣∣∣
where the Intersection over Union (IoU) [6] metric is given
by:

m(M̂,M) = IoU(M̂,M) =
|M̂ ∩M |+ ϵ

|M̂ ∪M |+ ϵ
.

The constant ϵ = 10−4 smooths the metric when both re-
gions are empty, in which case m(ϕ, ϕ) = 1, and will be
useful later.

Finally, we sort the regions M by decreasing score s(M)
and, scanning the list from high to low, we incrementally
remove duplicates down the list if they overlap by more
than 1/2 with the regions selected so far. The final result
is a ranked list of multi-view masksM = (M̂1, . . . , M̂N )
where N ≤ |P| and:

∀i < j : s(M̂i) ≥ s(M̂j) ∧ m(M̂i, M̂j) <
1

2
.

Other algorithms like SAM2 come with their own region
reliability metric s, which we use for sorting. We otherwise
apply non-maxima suppression to their ranked regions in
the same way as ours.



(a) Grid view generation failure

Input Generated Grid View Reconstructed 3D

> An orangutan 
using chopsticks to 

eat ramen

> a group of squirrels 
rowing crew

(b) Segmentation Failure

(C) Reconstruction Model Failure

Input Segmentation Map Reconstructed 3D

Input Reconstructed 3D Depth map

Figure A5. Failure Cases. (a) Multi-view grid generation failure,
where the generated views lack 3D consistency. (b) Segmentation
failure, where semantically distinct parts are incorrectly grouped
together. (c) Reconstruction model failure, where the complex ge-
ometry of the input leads to inaccuracies in the depth map.

Computing mAP. The image I comes from an object L
with parts (S1, . . . ,SS) from which we obtain the ground-
truth part masks S = (M1, . . . ,MS) as explained in Sec-
tion 3.5 in the main text. We assign ground-truth segments
to candidates following the procedure: we go through the
list M = (M̂1, . . . , M̂N ) and match the candidates one
by one to the ground truth segment with the highest IOU,

exclude that ground-truth segment, and continue travers-
ing the candidate list. We measure the degree of overlap
between a predicted segment and a ground truth segment
as m(M̂,M) ∈ [0, 1]. Given this metric, we then report
the mean Average Precision (mAP) metric at different IoU
thresholds τ . Recall that, based on this definition, comput-
ing the AP curve for a sample involves matching predicted
segments to ground truth segments in ranking order, ensur-
ing that each ground truth segment is matched only once,
and considering any unmatched ground truth segments.

In more detail, we start by scanning the list of segments
M̂k in order k = 1, 2, . . . . Each time, we compare M̂k to
the ground truth segments S and define:

s∗ = argmax
s=1,...,S

m(M̂k,Ms).

If m(M̂k,Ms∗) ≥ τ, then we label the region Ms as re-
trieved by setting yk = 1 and removing Ms from the list of
ground truth segments not yet recalled by setting

S ← S \ {Ms∗}.

Otherwise, if m(M̂k,Ms∗) < τ or if S is empty, we set
yk = 0. We repeat this process for all k, which results in
labels (y1, . . . , yN ) ∈ {0, 1}N . We then set the average
precision (AP) at τ to be:

AP(M,S; τ) = 1

S

N∑
k=1

k∑
i=1

yiyk
k

.

Note that this quantity is at most 1 because by construction∑N
i=1 yi ≤ S as we cannot match more proposal than there

are ground truth regions. mAP is defined as the average of
the AP over all test samples.

Computing recall at K. For a given sample, we define re-
call at K the curve

R(K;M,S, τ) = 1

S

S∑
s=1

χ

(
max

k=1,...,K
m(M̂s,Mk) > τ

)
.

Hence, this is simply the fraction of ground truth segments
recovered by looking up to position K in the ranked list of
predicted segments. The results in Figure A2 demonstrate
that our diffusion-based method outperforms SAM2 and its
variants by a large margin and shows consistent improve-
ment as the number of samples increases.

Seeded part segmentation. To evaluate seeded part seg-
mentation, the assessment proceeds as before, except that
a single ground truth part S and mask M is considered at
a time, and the corresponding seed point u ∈ M is passed
to the algorithm (M̂1, . . . , M̂K) = A(I, u). Note that, be-
cause the problem is still ambiguous, it makes sense for the
algorithm to still produce a ranked list of possible part seg-
ments.



C. Additional Examples

More application examples. We provide additional appli-
cation examples in Figure A3, showcasing the versatility of
our approach to varying input types. These include part-
aware text-to-3D generation, where textual prompts guide
the synthesis of 3D models with semantically distinct parts;
part-aware image-to-3D generation, which reconstructs 3D
objects from a single image while maintaining detailed
part-level decomposition; and real-world 3D decomposi-
tion, where complex real-world objects are segmented into
different parts. These examples demonstrate the broad ap-
plicability and robustness of PartGen in handling diverse
inputs and scenarios.

Iteratively adding parts. As shown in Figure A4, we
demonstrate the capability of our approach to compose a 3D
object by iteratively adding individual parts to it. Starting
with different inputs, users can seamlessly integrate addi-
tional parts step by step, maintaining consistency and co-
herence in the resulting 3D model. This process highlights
the flexibility and modularity of our method, enabling fine-
grained control over the composition of complex objects
while preserving the semantic and structural integrity of the
composition.

D. Failure Cases

As outlined in the method section, PartGen incorporates
several steps, including multi-view grid generation, multi-
view segmentation, multi-view part completion, and 3D
part reconstruction. Failures at different stages will result
in specific issues. For instance, as shown in Figure A5(a),
failures in grid view generation can cause inconsistencies
in 3D reconstruction, such as misrepresentations of the
orangutan’s hands or the squirrel’s oars. The segmenta-
tion method can sometimes group distinct parts together,
and limited, in our implementation, to objects containing
no more than 10 parts, otherwise it merges different build-
ing blocks into a single part. Furthermore, highly complex
input structures, such as dense grass and leaves, can lead to
poor reconstruction outcomes, particularly in terms of depth
quality, as illustrated in Figure A5(c).

E. Discussion

Compatibility with other reconstruction models. As
claimed in the main text, our pipeline is designed to be
compatible with various reconstruction models. In the cur-
rent implementation, the multi-view diffusion models out-
put four views at a fixed elevation (20◦) and distinct az-
imuth angles (0◦, 90◦, 180◦, 270◦) and later the 3D parts
and assets are reconstructed by lightplaneLRM. While other
reconstruction methods may require fine-tuning to achieve
optimal performance in this exact configuration, we demon-

strate empirically (as shown in Figure A6) that even some
open-source models [13–15] perform effectively for part-
level reconstruction tasks without additional fine-tuning,
and even when parts exhibit offsets from the center.

InstantMesh LightplaneLRMGRM LGM Uncompleted part Completed partInput 

Figure A6. Part reconstruction with different reconstruction
models. Results show that our pipeline is compatible with other
reconstruction models without further fine-tuning.

Inter-part crossover and alignment. Results in Table 3
in the main text suggest that our current method inherently
promotes effective part combinations because each part is
reconstructed considering contextual information from the
full object. Detailed assembly procedures supporting this
claim are provided in Appendix A.7. Nevertheless, we ac-
knowledge room for improvement. Enhanced part align-
ment and reduced crossover could potentially be achieved
by training a Lightplane Reconstruction Model (LRM) to
jointly reconstruct multiple parts simultaneously, leverag-
ing multi-view inputs for all parts to generate interdepen-
dent 3D reconstructions. Additionally, jointly completing
parts with 2D diffusion models is another promising ap-
proach currently under investigation. We expect these ad-
vancements will further refine the capabilities and insights
of 3DGen.

F. Ethics and Limitation

Ethics. Our models are trained on datasets derived from
artist-created 3D assets. These datasets may contain bi-
ases that could propagate into the outputs, potentially re-
sulting in culturally insensitive or inappropriate content. To
mitigate this, we strongly encourage users to implement
safeguards and adhere to ethical guidelines when deploying
PartGen in real-world applications.

Limitation. In this work, we focus primarily on object-
level generation, leveraging artist-created 3D assets as our
training dataset. However, this approach is heavily depen-
dent on the quality and diversity of the dataset. Extending
the method to scene-level generation and reconstruction is a
promising direction but it will require further research and
exploration.
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