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Supplementary Material

In the supplemental materials, we present additional de-
tails about our PhysGen3D framework App. A, more details
of our experimental design App. B.1, more quantitative and
qualitative results App. B.3, and various applications of our
system App. B.4. Furthermore, we invite the reviewers to
check a local webpage in the supplemental materials ac-
cessed by index.html, to see our generated videos.

A. Additional Details of PhysGen3D
We provide additional details about our framework, specif-
ically on how we handle multiple object occlusions during
the mesh generation stage, how we address background com-
pletion concerning objects and their shadows, the detailed
prompt used in physics reasoning, and further specifics about
the physical simulator utilized in our approach.

A.1. Mesh Generation

To reconstruct a 3D foreground object, we require a com-
plete and clearly segmented object image oi. For scenarios
with multiple object occlusions, we employ an iterative in-
painting and segmentation strategy, as illustrated in Fig. 1.
We first identify all the target objects using GPT-4o. In cases
where occlusions are detected, the objects are segmented and
inpainted sequentially, progressing from the foreground to
the background. Each subsequent segmentation step builds
upon the removal of previously processed objects, ensuring
accurate and unobstructed reconstruction.

A.2. Background Handling

Shadow significantly impacts the quality of background in-
painting if not masked properly. Existing shadow removal
methods [4–6] typically detect and remove all shadows in-
discriminately. However, our goal is to remove only the
shadow related to a specific object. To achieve this, we
adopt a straightforward method: we first segment regions
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Figure 1. Iterative Inpainting. Left: Input image. Middle: Inpaint-
ing result after 1 iteration, where the toy is masked and inpainted.
Right: Inpainting result after 2 iterations, where the chair is masked
and inpainted. The second result is used as background.

where brightness values fall below a certain threshold to
identify shadows. For each object, we determine the largest
connected component that includes both the object and its
shadow. Then, we dilate this mask with a kernel of size 50
and apply inpainting. Developing more adaptable, per-object
shadow removal techniques is left as future work.

A.3. Physics Reasoning

We use GPT-4o to reason the physical parameters for each
object and the surface. The prompt and an example answer
are as follows.

Listing 1. Prompt used for GPT-4o physics reasoning

Answer each question for each object in the picture, using
one word or number, separated by commas. For numbers,
do not use scientific notation.

Provide answers in the following format for each object:
’Object number, name, density in kg/m^3, Young’s modulus

(soft/medium/hard), size in meters, requires internal
filling (yes/no).’

If there are multiple objects in the picture, respond for
each object on a new line in the specified format.

What is each object’s name (one word)?
What is its density in kilograms per cubic meter?
What is its Young’s modulus in Pa? (Choose from: Soft:

Materials like plush toys, foam, or fabric. Medium:
Materials like rubber or soft plastic. Hard:
Materials like wood, metal, or hard plastic)

What is its size in meters?
Does the object require internal filling for MPM

simulations (yes/no)?

Estimate the roughness of the supporting surface in the
picture, such as tables, floors, or any other
horizontal surfaces that can act as supports. Provide
answers in roughness value (0 to 1, where 0 =
perfectly smooth and 1 = extremely rough)’.

Listing 2. Example answers from GPT-4o

1, camera_model, 200, soft, 0.15, yes
2, camera, 2700, hard, 0.20, no
0.2

In our observation, GPT-4 often provides unstable results
for the exact value of Young’s modulus, with discrepan-
cies spanning several orders of magnitude. To address this,
we defined three categories—soft, medium, and hard—to
guide GPT’s classification. In the simulator, the elasticity
E does not directly correspond to the real Young’s modulus.
Based on experience, we associate the three categories with
E = 5× 104, E = 5× 105, and E = 5× 106, respectively.



A.4. Dynamics Simulation

For simulation stability, we fix the size of the simulator to
2 and the resolution to 256. Since the target object’s scale
varies from several centimeters to tens of meters, we align
the object with the reconstructed scene and fit it into the
simulator. To simulate real physics, we scale the physical
parameters accordingly. Suppose the reasoned real size of
the object is s0, and the scaled mesh has size s′. Then, the
scaling factor is k = s′

s0
. In the simulator, we set gravity

to g′ = k × g0 = k × 9.8. The elasticity of each object is
also scaled: E′

i =
Ei

k . (According to dimensional analysis,
Young’s modulus is inversely proportional to the scale of
length.)

We use Taichi Elements [1–3] for Material Point Method
(MPM) simulations and modify it to support inhomogeneous
materials. MPM is a computational technique used to sim-
ulate the behavior of continuum materials. The governing
equation of motion is:

ρ
Dv

Dt
= ∇ · σ + fext,

where:
• ρ: Density of the material,
• v: Velocity field,
• σ: Cauchy stress tensor,
• fext: External forces per unit volume.

To be specific, MPM combines the strengths of La-
grangian and Eulerian methods by representing materials
as discrete particles while performing computations on a
background grid. The key steps of MPM are particle-to-grid
(p2g) and grid-to-particle (g2p) transfers.

Particle-to-Grid (p2g) Transfer. This step transfers parti-
cle properties (mass, momentum, etc.) to the grid.

Mass Transfer. Grid mass is computed by distributing
particle mass mp to nearby grid nodes using weighting func-
tions w:

mi =
∑
p

w(xp − xi)mp,

where:
• mp = ρpVp: Particle mass (density ρp, volume Vp),
• w: Quadratic kernel for interpolation.

Momentum Transfer. Momentum is transferred to the
grid using the same weight:

vi =

∑
p w(xp − xi)vpmp

mi
,

where:
• vi: Grid velocity,
• vp: Particle velocity.

Stress Contribution. The stress tensor σ contributes force
to the grid momentum. Using the deformation gradient F ,
the stress is defined as:

σ = 2µ(F −R)F⊤ + λJ(J − 1)I,

where:
• µ and λ: Lamé parameters,
• F : Deformation gradient,
• R: Rotation matrix from SVD (F = RS),
• J = det(F ): Determinant of F ,
• I: Identity matrix.
The Lamé parameters λ and µ are computed from Young’s
modulus E and Poisson’s ratio ν as follows:

λ =
Eν

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

where:
• E: Young’s modulus, which describes the material’s stiff-

ness,
• ν: Poisson’s ratio, which defines the ratio of lateral strain

to axial strain.
Grid Velocity Update. The grid force due to stress is

given by:
fi = −

∑
p

w′(xp − xi)Vpσp.

Newton’s second law updates grid velocities:

vn+1
i = vn

i +∆t
fi
mi

,

where ∆t is the time step.

Grid-to-Particle (g2p) Transfer This step interpolates
updated grid data back to particles and updates their states
(e.g., velocity, deformation).

Velocity Interpolation. Particle velocities are updated by
interpolating grid velocities:

vn+1
p = vn

p +
∑
i

w(xp − xi)v
n+1
i .

Affine Velocity Field. Affine velocity updates capture
velocity gradients from the grid:

Cp =
∑
i

4
w(xp − xi)

∆x
vi ⊗ (xi − xp).

Deformation Gradient Update. The deformation gradient
Fp evolves based on the velocity gradient:

Fn+1
p = (I+∆tCp)F

n
p ,

where I is the identity matrix.
Advection. Finally, particles are advected using updated

velocities:
xn+1
p = xn

p +∆tvn+1
p .



B. Additional Details of Experiments
Our experiments are designed to compare with the most
competitive baselines using multiple evaluation metrics, in-
cluding human evaluation and GPT-based evaluation. Due to
page limitations in the main paper, we provide detailed infor-
mation about the experimental settings, evaluation metrics,
and additional results here.

B.1. Experiments Settings

In the comparative experiment between our method and
baseline generative models, we tried our best to ensure they
shared the same generation goal. For our method, we man-
ually assigned an initial 3D velocity to each object. To
"interpret" this into text, we described the corresponding
dynamics and converted them into prompts such as, "The ele-
phant hops up and falls onto the ground" or "The book falls
and the orange rolls forward." All three baseline models
were prompted with the same text. Additionally, Kling sup-
ports "motion brush" inputs, which were provided alongside
the textual prompt. Fig. 2 illustrates examples of "motion
brush" inputs, where we manually set the stable parts, mov-
able parts, and their trajectory.

B.2. Evaluation

In our main paper, we only present the quantitative results
of human evaluation. Here, we conduct further experiments
using GPT-4 and provide the details.

Human Evaluation. We designed a questionnaire to con-
duct human evaluation, as illustrated in Fig. 3. A total of 31
participants were recruited to complete the 27-page question-
naire. At the beginning, we provided an explanation of video
generation models to ensure that participants had a clear
understanding of the task. Each page of the questionnaire
contains an initial reference image, accompanied by a text
prompt describing the expected behavior in the video (e.g.,
"Red apple rolls on the table"). Four videos are presented on
each page in a random order, all corresponding to the same
initial condition and text prompt. Participants are instructed
to assess each video based on three dimensions. This de-
sign ensures a fair, consistent, and comprehensive evaluation

Figure 2. Motion brush input for Kling. In all cases, we manually
define the motion for each object by identifying the movable part
and drawing its trajectory. Additionally, we specify the stable part
of the object.

process.
GPT-4o Evaluation. To assess the quality of the gener-

ated videos, we also conducted evaluations using GPT-4o for
both our results and the baselines. The prompt is as follows:

Listing 3. Prompt used for GPT-4o evaluation

I would like you to evaluate the quality of four generated
videos based on the following criteria: physical
realism, photorealism, and semantic consistency. The
evaluation will be based on 10 evenly sampled frames
from each video. Given the original image and the
following instructions: ’{instructions}’, please
evaluate the quality of each video on the three
criteria mentioned above.

Note that: Physical Realism measures how realistically the
video follows the physical rules and whether the
video represents real physical properties like
elasticity and friction. To discourage completely
stable video generation, we instruct respondents to
penalize such cases. Photorealism assesses the
overall visual quality of the video, including the
presence of visual artifacts, discontinuities, and
how accurately the video replicates details of light,
shadow, texture, and materials. Semantic Consistency
evaluates how well the content of the generated video
aligns with the intended meaning of the text prompt.

Please provide the following details for each video,
scores should be ranging from 0-1, with 1 to be the
best:

Video 1: Physical Realism Score: [a score]; Photorealism
Score: [a score]; Semantic Consistency Score: [a
score]

Video 2: Physical Realism Score: [a score]; Photorealism
Score: [a score]; Semantic Consistency Score: [a
score]

Video 3: Physical Realism Score: [a score]; Photorealism
Score: [a score]; Semantic Consistency Score: [a
score]

Video 4: Physical Realism Score: [a score]; Photorealism
Score: [a score]; Semantic Consistency Score: [a
score]

Note that your output should strictly follows the above
format, with a ’;’ after each score. Do not give any
other explanations.

The first image is the input image.
# input image
Here are 10 evenly spaced frames from the generated video

number {idx + 1}.
# generated frames

B.3. Additional Results

show that both methods introduce unrealistic deformations.
DragAnything sometimes fails to maintain a stable back-
ground, even when manually set. MOFA demonstrates better
motion control but lacks realism as well. See the table below
for quantitative results. We provide additional quantitative
and qualitative results of our experiments.

Human Evaluation Results. We analyze the human eval-
uation scores further in Fig. 4. The distribution of scores
indicates that participants generally agree that most of our re-
sults are both physically realistic and semantically consistent.



Figure 3. An example page of human evaluation questionnaire. In each page of the questionnaire, we explain the criteria in detail. We
provide the input image, the text prompt and four generated videos in a random order. Each video is followed by a evaluation matrix on a
five-point scale, from strongly disagree (1) to strongly agree (5).
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Figure 4. Human evaluation score distribution. Score distribution shows our method’s superiority in physical realism and semantic
consistency, with comparable performance across models in photorealism.

Our method significantly outperforms baseline generative
models on these two criteria. However, the four models
perform comparably in terms of photorealism.

Additional Qualitative Results. Here, we present addi-
tional qualitative results in Fig. 5. The first row demonstrates
the "sandy" effect, where the material of the teddy bear is
transformed into sand. The last row illustrates a multi-object
collision scenario, where three apples collide with one an-

other. More results are available in video format on our
supplementary webpage.

Fig. 6 shows the results after VEnhancer’s
post-processing. Although VEnhancer recovers fine
details, it can also introduce hallucinations. This illustrates a
fundamental trade-off between photorealism and physical
accuracy: integrating diffusion models into the pipeline
leverages their strong priors to compensate for reconstruc-



Input Generation (left→right: time steps)

Figure 5. More qualitative results. The first row demonstrates the "sandy" effect, transforming the teddy bear’s material into sand, while
the second and third rows showcase bouncing and rolling effects, respectively. The fourth row illustrates a multi-object collision scenario,
with three apples colliding with one another, and the final row highlights the system’s ability to generate a video from a painting.
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Figure 6. Qualitative comparison of VEnhancer. After post-
processing by VEnhancer, more details are recovered and the video
appears to be more photorealistic.

tion and rendering errors, but it cannot guarantee adherence
to real-world physics.

Fig. 7 shows the results of two open-sourced diffusion
models, MOFA-Video and DragAnything. Both methods in-
troduce unrealistic deformations: DragAnything sometimes
fails to maintain a stable background, even when manually

MOFA-Video DragAnything

Figure 7. Qualitative results of MOFA-Video and DragAnything.
These two open-sourced diffusion models fail to keep background
consistent and produce unrealistic deformations.

set. MOFA demonstrates better motion control but lacks
realism as well. Quantitative results of VBench scores in the
main paper support these findings.
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Figure 8. More On Limitations. The left two images show simulation failures, where unwanted floating points appear in the final rendering
results. The middle two images show reconstruction failures, where the wall is recognized as ground by mistake. The right two images
depict texture optimization failures, where the car fails to accurately reproduce the real roughness and metallic properties, resulting in an
unrealistic appearance.
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Figure 9. Camera controls. We provide a case demonstrating the
potential to perform camera controls on above our pipeline. The left
one is the only input image. The right three images are generated
with outpaiting and reconstruction.

B.4. Applications

Our video generation framework, PhysGen3D, enables a
range of exciting applications through its explicit represen-
tation. Here are just a few of the compelling use cases our
system supports:

Camera controls. PhysGen3D’s 3D scene representation
inherently supports novel view synthesis. We demonstrate
this capability (see figure below) by extending our method
with minimal modifications: (1) outpainting and meshing the
background and (2) rendering from novel views. Results in
Fig. 9 show good consistency across views while maintaining
environmental coherence.

Generate Video from Paintings. Thanks to the gener-
alization ability of our interactive 3D world reconstruction
pipeline, our method can extend beyond real photos to ac-
commodate other types of inputs, such as generated images
and paintings. The final row of Fig. 5 demonstrates the
generation of a video from a painting.

C. Limitations
In the main text, we present three failure cases, each high-
lighting a specific type of error in perception, simulation,
and rendering. Fig. 8 illustrates additional failures. One
involves incorrectly reconstructed meshes with unwanted
floating points. Although we have implemented floating
point removal during rendering, some points are too close to
the object to be detected. Another failure involves material
that is incorrectly estimated. The reflectance behavior of cars
poses a challenging optimization target, and inaccuracies in

inverse rendering result in unrealistic renderings. Failures
or inaccuracies may also occur in depth and light estima-
tion. However, these modules are relatively mature, and such
errors are comparatively rare.

Many of these failures stem from the inherently ill-
posed nature of the task, as reconstructing the full geom-
etry, physics, and textures from partial scene observations
requires substantial prior knowledge.

Currently, we only support a single collider surface, such
as the ground or a table. However, our pipeline has the po-
tential to set all stable components as colliders. Additionally,
each object is currently homogeneous in density and elas-
ticity. In the future, we may assign different materials to
different parts of an object, as demonstrated in [7].

Overall, our method is designed for object-centric scenes,
excelling at mimicking real-world physics for rigid and de-
formable objects. It also supports a variety of edits and
effects. However, reconstructing entire scenes for more com-
plex scenarios remains an open challenge.
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