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Sec. A provides an overview the self-supervised learn-
ing models (Tab. 5) included in our study. Sec. B details
the evaluation metrics and presents the quantitative results
(Tab. 6 - 11) for each mid-level vision task. Sec. D show-
cases qualitative visualizations (Fig. 8 - 9). Sec. C discusses
the potential impact of the DPT head.

A. Self-supervised Learning Models

In our experiments, we select 22 SSL models from a wide
range of categories based on two criteria: (1) coverage of
the main approaches used for large-scale self-supervised
training and (2) comparable model architecture and train-
ing data to allow fair comparisons. We primarily evalu-
ate the publicly-available checkpoints pretrained on Ima-
geNet1K [12] — the links to each checkpoint are included
in Tab. 5. We briefly describe each SSL below.

Jigsaw. Noroozi and Favaro [45] introduced a self-
supervised learning approach for model pretraining based
on solving jigsaw puzzles as a pretext task. This method
trains a network to predict the correct arrangement of shuf-
fled image patches, where the image is divided into a 3x3
grid. At its core, this approach encourages the model to
learn spatial relationships and understand object structure
by generating consistent embeddings for the spatially rear-
ranged patches of the same image. In our study, we used
the publicly available ResNet-50 checkpoint trained on the
ImageNet-1k [53] dataset.

Rotnet. Gidaris et al. [25] proposed a self-supervised ap-
proach for model pretraining using a rotation prediction
task, known as RotNet. This method trains a network to
classify the rotation angle (0°, 90°, 180°, or 270°) applied
to an input image, encouraging the model to learn seman-
tic features and spatial structure within the image. At its
core, this approach leverages rotation as a proxy task, push-
ing the network to recognize objects and their orientations.
In our work, we evaluate the ResNet-50 architecture trained
on ImageNet-1k [53] using this pretext task and rely on the
checkpoint released by the authors.

NPID. Wu et al. [66] introduced a non-parametric
instance-level discrimination approach for unsupervised
feature learning. This method trains a network to distin-
guish between individual instances by treating each image
as its own unique class, employing a memory bank to store
and update embeddings for all instances in the dataset. At

its core, this approach promotes the model to learn discrim-
inative features by maximizing the similarity between aug-
mentations of the same instance and minimizing it across
others. In our work, we evaluate the ResNet-50 architec-
ture pre-trained on ImageNet-1k [53] using this instance
discrimination task.

NPID++. Misra et al. [42] significantly improves upon
the original implementation of NPID, achieving results that
substantially outperform those reported in the original pa-
per [66].

PIRL. Misra et al. [42] introduced Self-Supervised
Learning of Pretext-Invariant Representations (PIRL), a
method designed to learn representations that remain in-
variant across various pretext tasks. The approach applies
contrastive learning, where the model is trained to produce
similar embeddings for multiple augmentations of the same
image while distinguishing between different images. At
its core, PIRL combines instance discrimination with pre-
text invariance to capture both semantic and structural fea-
tures. In our work, we evaluate the ResNet-50 architecture
pre-trained on ImageNet using the PIRL framework.

ClusterFit. Yan et al. [67] proposed ClusterFit, a self-
supervised learning approach that improves feature repre-
sentations through clustering and re-training. This method
begins by clustering embeddings of unlabeled images to
capture the underlying data distribution, using these cluster
assignments as pseudo-labels to retrain the model, thus dis-
tilling semantic information at the cluster level. At its core,
ClusterFit follows a two-step process—clustering followed
by supervised re-training—to develop robust and discrim-
inative features. In our work, we evaluate the checkpoint
using ResNet-50 architecture which is pre-trained on Ima-
geNet.

SimCLR. Chen et al. [6] proposed SimCLR, a contrastive
self-supervised learning framework designed to learn visual
representations by maximizing agreement between different
augmented views of the same image. The method applies a
series of data augmentations, including random cropping,
color distortion, and Gaussian blur, and uses a contrastive
loss to bring embeddings of the same image instance closer
together while pushing apart embeddings of different im-
ages. At its core, SimCLR leverages a simple yet effective
contrastive objective, removing the need for specialized ar-



Table 5. Self-Supervised Model Details. This table provides details about each model, including the backbone architecture, the dataset
used for training, and the source links to the checkpoints utilized in our experiments.

Model Name Backbone Dataset Source Link

Jigsaw [45] ResNet-50 ImageNet-1K VISSL model zoo
RotNet [25] ResNet-50 ImageNet-1K VISSL model zoo
NPID [66] ResNet-50 ImageNet-1K VISSL model zoo
SeLa-v2 [4] ResNet-50 ImageNet-1K SwAV repository
NPID++ [42] ResNet-50 ImageNet-1K VISSL model zoo
PIRL [42] ResNet-50 ImageNet-1K VISSL model zoo
ClusterFit [67] ResNet-50 ImageNet-1K VISSL model zxwoo
DeepCluster-v2 [4] ResNet-50 ImageNet-1K SwAV repository
SwAV [4] ResNet-50 ImageNet-1K SwAV repository
SimCLR [6] ResNet-50 ImageNet-1K VISSL model zoo
MoCo v2 [8] ResNet-50 ImageNet-1K MoCo v2 repository
SimSiam [7] ResNet-50 ImageNet-1K MMSelfSup model zoo
BYOL [27] ResNet-50 ImageNet-1K Unofficial BYOL repo
Barlow Twins [69] ResNet-50 ImageNet-1K MMSelfSup model zoo
DenseCL [58] ResNet-50 ImageNet-1K DenseCL repository
DINO [5] ResNet-50/ViT-B/16 ImageNet-1K DINO repository
MoCo v3 [9] ResNet-50/ViT-B/16 ImageNet-1K MoCo v3 repository
iBOT [71] ViT-B/16 ImageNet-1K iBOT repository
MAE [30] ViT-B/16 ImageNet-1K MAE repository
MaskFeat [62] ViT-B/16 ImageNet-1K MMSelfSup model zoo

chitectures or memory banks. In our work, we evaluate the
ResNet-50 architecture trained on ImageNet-1k [53].

SwAV. Caron et al. [4] introduced SwAV (Swapping As-
signments between Views), a self-supervised learning ap-
proach that combines clustering with contrastive learning.
Instead of directly contrasting augmented views, SwAV
clusters the features of one view and assigns pseudo-labels,
which are then used to predict the cluster assignments of
another view. This method enables the model to learn rep-
resentations without requiring negative samples or a mem-
ory bank. At its core, SwAV maximizes similarity between
different augmentations by leveraging these swapped clus-
ter assignments. In our work, we evaluate the ResNet-50
architecture trained on ImageNet 1k with SwAV.

SeLa-v2. SeLa [1] proposes an alternative approach to
clustering-based self-supervised learning by formulating
the clustering process as an optimization problem. It uses
the Sinkhorn-Knopp algorithm to solve this optimization
efficiently, ensuring that cluster assignments are balanced
across the dataset. This avoids degenerate solutions where
all data points are assigned to a single cluster. Caron et
al. [4] re-implemented SeLa which improves upon the origi-
nal SeLa by incorporating additional training improvements
introduced in the self-supervised learning literature, such as
stronger data augmentation, an MLP projection head, and
temperature scaling for contrastive learning and yields bet-
ter performance.

MoCo-v2. Chen et al. [8] proposed MoCo-v2, an im-
proved version of the Momentum Contrast (MoCo) frame-
work for self-supervised learning. MoCo-v2 enhances the
original MoCo by incorporating stronger data augmenta-
tions (such as color distortion and Gaussian blur) and us-
ing an MLP projection head to further improve representa-
tion quality. Similar to its predecessor, MoCo-v2 employs a
memory bank to maintain a large pool of negative samples
and uses a momentum-updated encoder to produce stable
representations. At its core, this approach refines instance
discrimination with updated augmentations and architecture
adjustments. In our work, we evaluate the ResNet-50 archi-
tecture trained on ImageNet using MoCo-v2.

SimSiam. Chen and He [7] proposed SimSiam, a self-
supervised learning framework designed to simplify con-
trastive learning by removing the need for negative sam-
ples, momentum encoders, or memory banks. Instead, Sim-
Siam trains a Siamese network with two branches, where
one branch predicts the representation of the other. By us-
ing only a stop-gradient operation on one branch, SimSiam
prevents the network from collapsing to trivial solutions,
allowing it to learn meaningful representations from posi-
tive pairs alone. At its core, SimSiam is a simple and effi-
cient method that demonstrates the feasibility of contrastive
learning without negatives. In our work, we evaluate the
ResNet-50 architecture trained on ImageNet 1k with Sim-
Siam.

DenseCL. Wang et al. [58] introduced DenseCL, a self-
supervised learning approach that extends contrastive learn-



ing to dense feature correspondences within images. Un-
like traditional contrastive methods focused on global rep-
resentations, DenseCL aims to learn pixel-level features by
contrasting dense local regions between augmented views
of the same image. This pixel-level contrastive objective
encourages the model to learn spatially detailed represen-
tations, which benefit dense prediction tasks such as object
detection and segmentation. At its core, DenseCL leverages
fine-grained contrastive learning to produce more spatially
aware features. In our work, we evaluate the ResNet-50 ar-
chitecture trained on ImageNet 1k using DenseCL.

BYOL. Grill et al. [27] proposed BYOL, a self-
supervised learning framework that learns visual represen-
tations without requiring negative samples. BYOL employs
two neural networks: a “student” network and a “target”
network. The student learns to predict the target’s repre-
sentation of an augmented view of the same image, and the
target network is updated as an exponential moving aver-
age of the student. This setup enables the model to avoid
trivial solutions by progressively refining representations
through self-distillation. At its core, BYOL relies on boot-
strap mechanisms and a momentum update to learn mean-
ingful features without contrastive pairs. In our work, we
evaluate the ResNet-50 architecture trained on ImageNet 1k
using BYOL.

DeepCluster-v2. Caron et al. [3] introduced DeepClus-
ter which uses k-means clustering on deep features to as-
sign pseudo-labels to unlabeled data. These pseudo-labels
are then used for training the network in an iterative pro-
cess. However, DeepCluster suffers from the instability of
cluster assignments between epochs, which requires reini-
tializing the classification layer repeatedly, disrupting the
training of the convolutional network. Caron et al. [4] re-
implement DeepCluster and address ealier issues by intro-
ducing explicit comparisons between features and cluster
centroids instead of learning a classification layer for clus-
ter assignments. This direct comparison increases the sta-
bility and performance of the training process. Additionally,
DeepCluster-v2 incorporates modern self-supervised learn-
ing tricks and further enhances the method’s performances.

Barlow Twins. Zbontar et al. [69] proposed Barlow
Twins, a self-supervised learning approach designed to re-
duce redundancy in representations by decorrelating feature
dimensions. The method uses a loss function that encour-
ages the cross-correlation matrix between two identical net-
works’ embeddings of augmented views to be as close to
the identity matrix as possible, reducing redundancy across
dimensions. This setup allows the model to learn diverse
and informative features without the need for negative sam-
ples or memory banks. At its core, Barlow Twins pro-

motes redundancy reduction, enhancing feature decorrela-
tion. In our work, we evaluate the ResNet-50 architecture
pre-trained on ImageNet 1k using Barlow Twins.

MoCo-v3. Chen et al. [9] proposed MoCo-v3, an ex-
tension of the Momentum Contrast framework tailored
for Vision Transformers (ViTs) in self-supervised learning.
MoCo-v3 adapts the momentum contrastive learning strat-
egy to ViTs, introducing optimizations such as an MLP
projection head and advanced data augmentations. Simi-
lar to previous versions, MoCo-v3 leverages a momentum-
updated encoder to generate stable features and uses a
queue-based memory bank to manage negative samples. At
its core, this approach refines contrastive learning by com-
bining MoCo’s momentum mechanism with the ViT archi-
tecture. In our work, we evaluate the ViT-B/16 architecture
trained on ImageNet using MoCo-v3 and employ the check-
point released by the authors.

DINO. Caron et al. [5] proposed a self-distillation ap-
proach for model pretraining. The proposed approach trains
a student network to generate features similar to a teacher
network, where the teacher is an exponential moving aver-
age of the student network. At its core, this approach relies
on instance discrimination as the model is trained to learn to
generate similar embeddings for different crops of the same
image instance. In our work, we evaluate the ViT-B/16 ar-
chitecture trained on ImageNet-1k. We use the checkpoint
released by the authors.

MAE. He et al. [30] showed that training vision trans-
formers to reconstruct images based on randomly masked
inputs is an effective pretraining task. Such models are
trained with a large masking ratio; e.g., 75% of the input
image patches are masked. In our experiments, we use the
ViTB/16 and ViT-L/16 models trained on ImageNet-1k.

MaskFeat. Wei et al. [62] introduced MaskFeat, a self-
supervised learning approach that learns visual representa-
tions by predicting masked visual tokens in videos. Mask-
Feat leverages a Vision Transformer (ViT) and operates
by masking random patches in input video frames, then
training the model to predict feature embeddings of these
masked regions. This strategy encourages the model to cap-
ture rich semantic and spatial features, which generalize
well across various downstream tasks. At its core, Mask-
Feat combines masked prediction with a ViT backbone,
making it particularly effective for dense prediction tasks.
In our work, we evaluate the ViT-B/16 architecture trained
on ImageNet-1k using MaskFeat.



BEiT-v2. Peng et al. [48] proposed BEiT-v2, a self-
supervised learning method that improves upon the original
BEiT by introducing a more refined tokenization process
for masked image modeling. BEiT-v2 leverages a teacher-
student framework, where the teacher network generates
discrete tokens from image patches, and the student network
learns to predict these tokens from masked image patches.
This approach enhances the model’s ability to capture fine-
grained visual patterns and contextual relationships. At its
core, BEiT-v2 combines masked image modeling with a
new tokenization strategy to achieve state-of-the-art perfor-
mance on image classification and downstream tasks. In
our work, we evaluate the ViT-B/16 architecture trained on
ImageNet-1k using BEiT-v2.

iBOT. Zhou et al. [71] combine ideas from DINO and
MAE by training a model to reconstruct masked dense fea-
tures based on a teacher network. iBOT uses both an im-
agelevel and a dense distillation objective. We analyze
the ViT-B/16 and ViT-L/16 architectures trained on Ima-
geNet1k and ImageNet-22k. We evaluate the checkpoints
released by the authors.

B. Task-Specific Metric Descriptions

Generic Object Segmentation We report the full results
in Tab. 6 using the following metrics to evaluate generic
object segmentation, which involves binary segmentation of
foreground objects and background:

• F1 Score: The F1 score provides a harmonic mean of
precision and recall, offering a balanced evaluation of
segmentation performance, particularly in the presence of
class imbalance. It is defined as:

F1 =
2 · Precision · Recall
Precision + Recall

where Precision measures the proportion of correctly pre-
dicted foreground pixels among all pixels predicted as
foreground, and Recall measures the proportion of cor-
rectly predicted foreground pixels relative to all ground
truth foreground pixels.

• Accuracy: Accuracy quantifies the proportion of cor-
rectly classified pixels, encompassing both foreground
and background classes. It is defined as:

Accuracy =
Correct Predictions · (Fore. + Back.)

Total Pixels

While simple and intuitive, accuracy may be biased to-
ward the majority class (e.g., background), particularly in
cases of class imbalance.

• Mean Intersection over Union (mIoU): mIoU assesses
segmentation performance by averaging the Intersection

over Union (IoU) across all classes (foreground and back-
ground). For a given class c, IoU is defined as:

IoUc =
TPc

TPc + FPc + FNc

where TPc, FPc, and FNc denote the true positives, false
positives, and false negatives for class c. mIoU is com-
puted as:

mIoU =
1

C

C∑
c=1

IoUc

where C = 2 for generic object segmentation. mIoU pro-
vides a robust evaluation of the model’s capacity to cap-
ture spatial overlap and resolve fine-grained boundaries.
These metrics collectively provide a comprehensive

evaluation of the model’s performance in binary segmen-
tation tasks, highlighting both pixel-level accuracy and the
model’s ability to distinguish between foreground and back-
ground regions.

Depth Prediction We present the complete results for
depth prediction in Tab. 7. To evaluate performance, we
adopt the setup described in [16], which includes comput-
ing the root mean square error (RMSE) and evaluating the
prediction accuracy under different threshold criteria. The
threshold-based accuracy, denoted as δi, measures the pro-
portion of pixels for which the ratio between the predicted
depth (dpr) and the ground-truth depth (dgt) lies below
1.25i. Formally, this is defined as:

δi(d
pr, dgt) =

1

N

N∑
j=1

[
max

(
dprj

dgtj
,
dgtj
dprj

)
< 1.25i

]
(1)

where N is the total number of pixels, dpr represents the
predicted depth, and dgt is the ground-truth depth.

Surface Normal Estimation For each pixel in the image,
the error is defined as the angular deviation (in degrees) be-
tween the predicted and ground-truth surface normals. To
evaluate the model’s performance, we compute two primary
metrics: (1) the root mean square error (RMSE), which
measures the overall angular error, and (2) the accuracy
of predictions at predefined angular thresholds. Specifi-
cally, the accuracy metric is calculated as the proportion
of pixels whose angular error falls within thresholds of
11.25◦, 22.5◦, and 30◦, following established evaluation
protocols [2, 22, 49].

Geometric Correspondence We report full results on ob-
ject geometric correspondence in Tab. 9 and scene geomet-
ric correspondence in Tab. 10. Correspondences are evalu-
ated using either 2D projection error or 3D metric error. For



40 50 60 70 80

ImageNet LP (%)

0

20

40

m
Io

U

R2 = 0.46

(a)

Generic Object Segmentation (Zero-shot)

40 50 60 70 80

ImageNet LP (%)

60

65

70

75

m
Io

U

R2 = 0.57

(b)

Generic Object Segmentation (Linear)

Figure 7. (a) Zero-shot generic object segmentation using CutLER. (b) Linear probing evaluation on generic object segmentation.

a correspondence between pixel locations p in image 1 and
q in image 2, the 2D projection error is computed as follows.
First, p is projected into 3D space, yielding a 3D point P,
using the depth value at p and the camera intrinsics of image
1. The 3D point P is transformed to the coordinate frame of
image 2 using the relative camera pose and projected back
onto the image plane of image 2, yielding the pixel location
p′. The 2D projection error is then defined as:

Error2D = ∥p′ − q∥2
where ∥ · ∥2 represents the Euclidean distance in the image
plane.

For 3D metric error, both p and q are transformed into a
shared 3D coordinate space, resulting in P and Q, respec-
tively. The 3D metric error is then computed as:

Error3D = ∥P−Q∥2
The 2D projection error is used for scene-level correspon-
dences, while the 3D metric error is preferred for objects to
better account for occlusions and thin structures.

To evaluate correspondence quality, we compute corre-
spondence recall, defined as the percentage of correspon-
dences with error below a threshold τ :

Recall =
|{Error < τ}|

N

Where |{Error < τ}| indicates the number of corre-
spondences with error below the threshold τ and N is the
total number of correspondences. We report recall values
for various τ values and analyze results across image pairs
grouped by relative viewpoint changes.

Mid-level Image Similarity We present the full results
for mid-level image similarity in Tab. 11. In this task, a
reference image is provided, and the model selects one of
two candidate images based on mid-level image similarity.
The evaluation metrics used are Accuracy (Acc), Precision
(Prec), Recall (Rec), and F1 Score (F1), defined as follows:
Accuracy (Acc): The proportion of correctly predicted
matches out of the total comparisons:

Acc =
Correct Predictions
Total Comparisons

Precision (Prec): The proportion of correctly identified
matches (true positives, TP) among all images predicted as
matches:

Prec =
TP

TP + False Positives (FP)

Recall (Rec): The proportion of correctly identified
matches (TP) among all actual matches in the dataset:

Rec =
TP

TP + False Negatives (FN)

F1 Score (F1): The harmonic mean of Precision and Recall,
providing a balanced measure of performance:

F1 =
2 · Prec · Rec
Prec + Rec

These metrics provide a rigorous evaluation of the
model’s ability to identify mid-level image similarities ac-
curately and consistently.

C. Potential Impact of DPT Decoder
Zero-shot vs. Fine-tuning: Fig. 7 provides a zero-
shot evaluation on generic object segmentation using Cut-
LER [60]. The observation aligns with our fine-tuning ex-
periments — the R2 value remains high. However, Cut-
LER requires model-specific hyperparameters and achieves
lower performance than fine-tuning DPT with frozen back-
bones.
Potential Impact of DPT Decoder: We ablate the impact
of DPT decoder in (b) from Fig. 7. We conducted 22 ad-
ditional experiments on generic object segmentation using
linear probing, as shown in above figure (b). The overall
trend and relative model rankings remain consistent with
our findings using DPT.

D. Qualitative Comparisons
We present qualitative visualizations in Fig. 8 and Fig. 9 to
assess model performance on mid-level vision tasks. These
visualizations validate the models’ ability to learn and per-
form each mid level vision task effectively.
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Figure 8. Qualitative Depth Estimation Results for Selected SSL Models. Depth estimation visualizations are shown for selected
SSL models, with the δ1 score displayed below each visualization (higher is better). These results highlight the models’ effectiveness in
capturing depth information. Note DINO and MoCo v3 are ViT based.
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Table 6. 2D Grouping Results (Generic Object Segmentation). Evaluation results for generic object segmentation, where models
segment foreground objects from the background, are presented for both VOC07 [19] and VOC12 [20] datasets.

VOC07 [19] VOC12 [20]

Model Backbone Task F1-measure mIoU Accuracy F1-measure mIoU Accuracy

Self-Supervised Models (SSL)
Jigsaw [45] RN-50 IN-1k 71.13 63.03 83.24 81.51 71.48 89.41
RotNet [25] RN-50 IN-1k 75.84 65.32 85.39 83.46 71.46 89.94
NPID [66] RN-50 IN-1k 76.92 66.38 85.99 84.34 72.66 90.35
SeLa-v2 [4] RN-50 IN-1k 83.20 73.53 89.73 86.03 76.56 91.71
NPID++ [42] RN-50 IN-1k 80.75 69.59 87.84 85.46 75.24 91.29
PIRL [42] RN-50 IN-1k 79.55 69.62 87.69 86.40 77.39 92.46
ClusterFit [67] RN-50 IN-1k 77.91 67.94 86.79 85.58 72.98 90.25
DeepCluster-v2 [4] RN-50 IN-1k 79.33 71.08 88.14 88.29 79.91 93.01
SwAV [4] RN-50 IN-1k 79.72 71.95 88.59 87.38 78.72 92.91
SimCLR [6] RN-50 IN-1k 81.05 73.63 89.44 87.94 79.62 93.25
MoCo v2 [8] RN-50 IN-1k 82.78 74.40 89.91 88.65 79.75 93.21
SimSiam [7] RN-50 IN-1k 82.99 74.05 89.88 88.25 77.51 92.05
BYOL [27] RN-50 IN-1k 83.20 71.97 89.21 87.74 78.81 93.09
Barlow Twins [69] RN-50 IN-1k 79.97 71.53 88.51 88.09 78.62 92.82
DenseCL [58] RN-50 IN-1k 79.32 70.71 88.03 87.19 78.75 92.47
DINO [5] RN-50 IN-1k 78.13 71.95 88.32 88.81 79.86 92.99
MoCo v3 [9] RN-50 IN-1k 82.56 71.48 88.88 85.44 77.41 92.06
DINO [5] ViT-B/16 IN-1k 83.12 74.00 89.79 88.70 79.94 93.17
iBOT [71] ViT-B/16 IN-1k 82.85 75.74 90.50 90.51 84.72 94.90
MoCo v3 [9] ViT-B/16 IN-1k 80.92 72.45 88.99 82.11 74.11 90.71
MAE [30] ViT-B/16 IN-1k 77.25 65.78 85.88 80.22 69.63 89.14
MaskFeat [62] ViT-B/16 IN-1k 78.84 70.28 87.76 84.27 75.14 91.00

Table 7. Depth Estimation Results for SSL Models on NYU and NAVI. Results for scene-level (NYU) and object-level (NAVI) depth
estimation using self-supervised models. These results demonstrate the performance of SSL models across diverse depth estimation tasks.

NYU NAVI

Model Architecture Dataset δ1 δ2 δ3 RMSE δ1 δ2 δ3 RMSE

Self-Supervised Models
Jigsaw [45] RN-50 IN-1k 71.17 93.02 98.24 0.6282 29.48 55.45 73.66 0.1775
RotNet [25] RN-50 IN-1k 73.18 93.41 98.23 0.6047 29.87 55.03 73.00 0.1804
NPID [66] RN-50 IN-1k 70.65 92.81 98.34 0.6191 37.88 65.46 80.82 0.1506
Sela-v2 [4] RN-50 IN-1k 74.76 94.47 98.80 0.5684 34.72 61.97 78.64 0.1586
NPID++ [42] RN-50 IN-1k 71.89 93.27 98.34 0.6110 38.07 65.32 80.69 0.1525
PIRL [42] RN-50 IN-1k 74.58 94.13 98.59 0.5780 38.55 65.36 80.86 0.1495
ClusterFit [67] RN-50 IN-1k 74.13 93.81 98.25 0.5850 39.45 66.47 81.45 0.1479
DeepCluster-v2 [4] RN-50 IN-1k 73.63 93.62 98.39 0.5863 39.50 67.35 82.43 0.1448
SwAV [4] RN-50 IN-1k 76.17 94.96 98.81 0.5542 39.45 67.13 82.04 0.1457
SimCLR [6] RN-50 IN-1k 75.64 94.67 98.65 0.5698 42.86 70.04 83.68 0.1365
MoCo v2 [8] RN-50 IN-1k 77.05 94.83 98.77 0.5467 45.42 72.55 85.42 0.1309
SimSiam [7] RN-50 IN-1k 75.95 94.74 98.78 0.5628 43.03 70.01 83.94 0.1366
BYOL [27] RN-50 IN-1k 75.43 94.48 98.68 0.5711 42.19 69.22 83.54 0.1387
Barlow Twins [69] RN-50 IN-1k 75.06 94.22 98.61 0.5791 41.83 68.74 83.01 0.1408
DenseCL [58] RN-50 IN-1k 76.30 94.69 98.65 0.5615 43.78 71.45 85.01 0.1332
DINO [5] RN-50 IN-1k 77.68 95.89 99.09 0.5235 47.63 74.31 86.54 0.1241
MoCo v3 [9] RN-50 IN-1k 75.56 94.63 98.86 0.5584 45.93 72.87 85.57 0.1309
DINO [5] ViT-B/16 IN-1k 79.38 95.97 99.05 0.5278 47.75 74.65 87.02 0.1241
iBOT [71] ViT-B/16 IN-1k 81.32 96.90 99.34 0.4919 50.02 76.29 87.89 0.1199
MoCo v3 [9] ViT-B/16 IN-1k 80.14 96.14 99.16 0.5109 51.07 76.96 87.95 0.1175
MAE [30] ViT-B/16 IN-1k 66.17 90.38 97.37 0.6898 26.78 51.82 71.69 0.1868
MaskFeat [62] ViT-B/16 IN-1k 80.39 96.18 99.07 0.5125 49.50 75.47 87.14 0.1195



Table 8. Surface Normal Estimation Results on NYUv2 and NAVI Datasets. Performance of self-supervised models on scene-level
(NYUv2) and object-level (NAVI) surface normal estimation, evaluated using angular thresholds (11.25°, 22.5°, 30°) and RMSE metrics.

NYUv2 NAVI

Model Backbone Dataset 11.25° 22.5° 30° RMSE 11.25° 22.5° 30° RMSE

Self-Supervised Models
Jigsaw [45] RN-50 IN-1k 44.27 67.65 76.23 28.8386 22.79 49.22 62.50 36.6169
RotNet [25] RN-50 IN-1k 43.93 67.40 76.07 28.8557 23.70 50.20 63.46 28.8557
NPID [66] RN-50 IN-1k 40.80 64.68 73.97 35.4511 24.92 51.82 64.87 35.4511
SeLa-v2 [4] RN-50 IN-1k 45.14 68.98 77.53 28.0449 25.73 53.19 66.22 34.7204
NPID++ [42] RN-50 IN-1k 41.57 65.98 75.14 29.2829 25.03 52.03 65.20 34.9940
PIRL [42] RN-50 IN-1k 44.92 68.35 76.71 28.5771 27.01 54.06 66.85 34.1514
ClusterFit [67] RN-50 IN-1k 43.93 67.40 76.12 28.9261 25.49 53.21 65.98 34.8134
Deepcluster-v2 [4] RN-50 IN-1k 44.48 68.29 76.98 28.2509 26.51 54.01 67.07 34.1514
SwAV [4] RN-50 IN-1k 44.08 67.98 76.81 28.2881 25.69 53.17 66.21 34.4863
SimCLR [6] RN-50 IN-1k 45.87 69.17 77.48 27.9438 26.70 54.21 67.07 34.1743
MoCo v2 [8] RN-50 IN-1k 46.37 69.79 78.03 27.5874 29.02 56.86 69.42 32.7033
SimSiam [7] RN-50 IN-1k 44.12 67.95 76.72 28.4032 28.06 55.71 68.18 33.5474
BYOL [27] RN-50 IN-1k 43.64 67.73 76.46 28.5432 26.51 54.29 67.17 34.1015
Barlow Twins [69] RN-50 IN-1k 44.04 67.75 76.57 28.4161 27.21 54.70 67.46 33.9390
DenseCL [58] RN-50 IN-1k 45.30 68.74 77.16 28.2974 27.21 54.70 67.46 33.9390
DINO [5] RN-50 IN-1k 47.64 70.96 79.12 26.8891 31.43 59.50 71.77 31.3895
MoCo v3 [9] RN-50 IN-1k 43.03 67.15 76.20 28.6994 27.22 55.03 67.85 33.7240
DINO [5] ViT-B/16 IN-1k 48.42 69.71 77.57 28.0873 31.66 58.58 70.68 31.9912
iBOT [71] ViT-B/16 IN-1k 52.02 72.43 79.53 26.9539 32.75 60.06 71.69 31.4563
MoCo v3 [9] ViT-B/16 IN-1k 49.64 70.01 77.36 28.2596 31.72 57.84 69.20 33.0295
MAE [31] ViT-B/16 IN-1k 43.89 66.13 74.56 30.1382 22.07 49.06 62.63 36.4724
MaskFeat [62] ViT-B/16 IN-1k 53.63 72.23 79.03 27.1797 32.40 58.92 70.43 32.3430

Table 9. Geometric Correspondence Results on the NAVI Dataset. Evaluation of self-supervised models on geometric correspondence
tasks, including 3D Recall, 2D Projection Recall, and Binned Recall, across varying viewpoint angle ranges.

3D Recall 2D Recall Bin Recall

Model Architecture Dataset 0.01m 0.02m 0.05m 5px 25px 50px 0-30° 30-60° 60-90° 90-120°

Self-Supervised Models (SSL)
Jigsaw [45] RN-50 IN-1k 9.13 19.83 54.94 0.68 7.45 16.20 49.15 26.54 13.06 7.76
RotNet [25] RN-50 IN-1k 11.97 23.21 55.13 0.92 9.83 19.38 58.44 29.82 14.85 10.26
NPID [66] RN-50 IN-1k 18.70 32.11 63.38 1.57 15.80 27.47 69.09 41.51 22.96 16.62
SeLa v2 [4] RN-50 IN-1k 12.17 23.50 53.26 0.93 10.14 19.49 49.33 28.07 18.86 12.86
NPID++ [42] RN-50 IN-1k 13.20 25.86 58.25 0.87 10.52 21.20 53.10 32.17 19.75 14.41
PIRL [42] RN-50 IN-1k 16.21 29.49 61.54 1.15 13.21 24.73 60.73 36.56 22.61 16.40
ClusterFit [67] RN-50 IN-1k 10.85 21.49 56.86 1.86 9.08 16.94 43.28 26.57 17.32 11.61
DeepCluster v2 [4] RN-50 IN-1k 20.65 34.42 64.24 1.78 18.14 30.46 69.52 42.24 27.47 19.09
SwAV [4] RN-50 IN-1k 20.20 33.99 63.20 1.71 17.60 29.83 67.11 42.34 27.23 18.81
SimCLR [6] RN-50 IN-1k 16.57 30.68 61.75 1.09 13.49 25.80 60.53 37.77 23.67 18.27
MoCo v2 [8] RN-50 IN-1k 21.85 37.76 68.76 1.63 18.17 32.94 75.85 48.73 28.47 20.50
SimSiam [7] RN-50 IN-1k 23.47 38.16 68.41 2.07 20.16 33.57 76.05 48.63 29.90 20.46
BYOL [27] RN-50 IN-1k 10.81 21.11 56.81 2.26 9.02 16.64 46.24 26.45 15.82 10.65
Barlow Twins [69] RN-50 IN-1k 12.71 23.27 58.22 2.97 10.92 18.83 52.25 29.38 17.00 11.41
DenseCL [58] RN-50 IN-1k 17.59 34.57 67.63 1.17 14.28 29.17 71.25 44.65 26.29 17.76
DINO [5] RN-50 NAVI 30.57 47.36 75.43 2.61 26.79 42.41 84.37 61.43 39.01 26.82
MoCo v3 [9] RN-50 NAVI 21.70 36.29 65.49 1.70 18.43 31.77 73.41 45.90 27.84 19.88
DINO [5] ViT-B/16 IN-1k 25.91 43.00 74.66 3.16 22.54 36.86 84.78 56.28 33.20 22.54
iBOT [71] ViT-B/16 IN-1k 26.84 44.72 76.10 3.12 23.78 39.11 86.94 58.98 34.22 23.85
MoCo v3 [9] ViT-B/16 IN-1k 26.99 44.46 75.22 2.17 23.45 39.54 85.95 58.96 34.45 23.20
MAE [30] ViT-B/16 IN-1k 19.21 32.59 66.82 2.74 17.16 27.72 78.17 46.12 21.16 11.85
MaskFeat [62] ViT-B/16 IN-1k 22.11 35.16 65.92 2.08 19.67 31.37 86.25 51.50 22.17 11.00



Table 10. Geometric Correspondence Results on ScanNet. Evaluation of self-supervised models on 2D Projection Recall at varying
pixel error thresholds and Binned Recall across viewpoint angle ranges.

2D Recall Bin Recall

Model Architecture 5px 10px 20px 0-15° 15-30° 30-60° 60-180°

Self-Supervised Models
Jigsaw [45] RN-50 9.57 18.18 27.98 26.11 19.80 11.16 4.00
RotNet [25] RN-50 15.74 25.46 34.15 37.56 28.52 13.73 4.29
NPID [66] RN-50 27.64 40.10 50.07 52.84 44.85 28.24 11.34
SeLa-v2 [4] RN-50 12.21 22.70 33.36 31.73 24.61 14.61 6.54
NPID++ [42] RN-50 10.62 19.59 30.23 27.16 20.92 13.09 6.37
PIRL [42] RN-50 17.89 30.43 41.35 45.37 35.12 19.67 7.55
ClusterFit [67] RN-50 26.31 40.92 51.96 54.96 46.61 26.67 10.45
DeepCluster v2 [4] RN-50 17.30 27.90 37.57 38.25 30.90 18.09 7.87
SwAV [4] RN-50 25.41 38.74 49.86 52.34 44.20 27.48 10.23
SimCLR [6] RN-50 21.78 35.34 46.18 48.85 40.32 22.15 9.08
MoCo v2 [8] RN-50 24.92 37.65 48.33 50.92 41.97 24.56 8.97
SimSiam [7] RN-50 18.11 29.83 40.92 42.58 33.72 19.04 7.24
BYOL [27] RN-50 15.39 25.41 34.89 35.88 26.91 16.96 6.90
Barlow Twins [69] RN-50 18.83 30.60 40.61 42.36 33.96 19.24 8.55
DenseCL [58] RN-50 17.23 31.17 44.98 42.41 34.80 20.36 8.56
DINO [5] RN-50 26.63 40.64 51.49 54.07 45.63 27.80 11.19
MoCo v3 [9] RN-50 15.23 26.06 35.87 37.24 28.23 15.94 7.05
DINO [5] ViT-B/16 24.38 34.22 45.47 46.56 36.72 23.74 11.12
iBOT [71] ViT-B/16 20.04 29.45 41.07 41.13 30.95 20.00 9.47
MoCo v3 [9] ViT-B/16 25.03 39.31 51.00 53.18 42.87 27.05 11.95
MAE [31] ViT-B/16 6.64 10.31 18.42 15.64 9.81 6.63 3.81
MaskFeat [62] ViT-B/16 27.94 40.87 50.49 56.51 47.65 24.41 6.90

Table 11. Image Retrieval Results on the NIGHTS Dataset. Retrieval performance is evaluated using Accuracy, F1-score, Precision, and
Recall. Results are reported for self-supervised models using ResNet-50 and ViT-B/16 backbones, highlighting their capability to retrieve
similar images based on mid-level features.

Model Backbone Dataset Accuracy F1-Score Precision Recall

Self-Supervised Models (SSL)
Jigsaw [45] RN-50 NIGHTS 71.22 70.69 70.73 70.65
RotNet [25] RN-50 NIGHTS 75.33 75.14 74.40 75.89
NPID [66] RN-50 NIGHTS 81.41 81.16 80.84 81.47
SeLa-v2 [4] RN-50 NIGHTS 81.41 81.16 80.84 81.47
NPID++ [42] RN-50 NIGHTS 83.06 82.63 83.24 82.03
PIRL [42] RN-50 NIGHTS 83.77 83.56 83.19 83.93
ClusterFit [67] RN-50 NIGHTS 81.58 81.42 80.70 82.14
DeepCluster-v2 [4] RN-50 NIGHTS 85.25 84.93 85.26 84.60
SwAV [4] RN-50 NIGHTS 84.65 84.36 84.45 84.26
SimCLR [6] RN-50 NIGHTS 83.55 83.26 83.26 83.26
MoCo v2 [8] RN-50 NIGHTS 84.43 84.22 83.85 84.60
SimSiam [7] RN-50 NIGHTS 85.86 85.78 84.75 86.83
BYOL [27] RN-50 NIGHTS 85.86 85.75 84.90 86.61
Barlow Twins [69] RN-50 NIGHTS 83.11 82.70 83.26 82.14
DenseCL [58] RN-50 NIGHTS 82.73 82.53 82.03 83.04
DINO [5] RN-50 NIGHTS 83.83 83.31 84.50 82.14
MoCo v3 [9] RN-50 NIGHTS 84.70 84.37 84.70 84.04
DINO [5] ViT-B/16 NIGHTS 89.20 88.98 89.23 88.73
iBOT [71] ViT-B/16 NIGHTS 89.36 89.27 88.49 90.07
MoCo v3 [9] ViT-B/16 NIGHTS 87.17 86.90 87.19 86.61
MAE [30] ViT-B/16 NIGHTS 83.39 82.91 83.81 82.03
MaskFeat [62] ViT-B/16 NIGHTS 76.10 75.70 75.61 75.78


