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Supplementary Material

This appendix provides the training algorithm of our
proposed framework in Section A. The details of stochas-
tic beam search and prompting are given in Section B and
Section C. In Section D, we analyze the cross-domain per-
formance of our method compared with heuristic methods,
which have strong interpretability and potential in transfer.
Next, we provide an ablation study of beam search width.
We additionally visualize more demonstration cases in Sec-
tion F.

A. Training Algorithm

The training algorithm of the proposed method is elaborated
in Algorithm 1. In the algorithm, we describe: 1) the ini-
tialization of the networks f{f,d}, embeddings f{ti,Ii}; 2)
the multi-modal interactive encoding of each query to get
the interactive features M; 3) the exploration process with
stochastic beam search; 4) the exploitation process with re-
sponsive reinforcement and LVLMs inference. The com-
pleted pipeline consists of four parts above.

B. Discussion of Learnable Selection Methods

We are not the first to propose learnable selection meth-
ods for in-context learning, and previous works have ex-
plored this area [3, 4, 6, 7]. However, our method differs
significantly: 1) Modality: Prior methods focus solely on
unimodal LLM, making them unsuitable for multi-modal
inputs [3, 4, 6, 7]. In contrast, our method incorporates
interactive encoding that effectively leverages information
from multiple modalities while considering the interactions
between inputs. 2) Evaluation: Previous methods treat
LLM as a direct evaluator, assessing the validity of demo-
query pairs [6, 7]. This standard deviates considerably from
LLM’s actual reasoning results. Our method directly super-
vises policy learning using the reasoning outcomes of LLM.
3) Perspective and modeling: Previous methods indepen-
dently selected demonstrations without considering their in-
terrelationships [4]. Our method examines the ICL demon-
stration selection from a novel perspective, introducing new
ideas at the level of demonstration combinations and further
advancing exploration in this field.

C. Details of Stochastic Beam Search

In Section 3.3 of the manuscript, we introduce a modified
version of Beam Search, transforming its sampling from
deterministic to stochastic. The pytorch implementation is

Algorithm 1: Training Algorithm
Data: task T , candidate demonstrations D, size of

demonstration sets m, beam width c,
multi-modal encoder fe, interactive encoder
ff , auto-regressive decoder fd

Result: policy πθ

/* init policy and embeddings */
init ff , fd randomly;
prompt each demo in D;
encode prompts of each demo in D to get f{ti,Ii};

for (tq, Iq,y) ∼ T do
/* multi-modal interactive

encoding */
f{tq,Iq} ← fe(tq), fe(Iq);
M = ff (

[
ftq fIq ft1 fI1 ft2 fI2 · · ·

]
);

/* stochastic beam search */
B0 ← {(1,∅)};
for i← 1 to m do

B ← ∅;
for (s, E) ∈ Bt−1 do

qi ← fd(M, {qj | dj ∈ E});
s← calculate the similarities between
qi and each f{t,I};

for dj ∈ D do
B ← B ∪ {(s · si, E ∪ dj)};

end
end
S ← 0;
for (s, E) ∈ B do

S ← S + |s|;
end
s← s

|S| for each (s, E) in B;
sample from B with possibility s to get
Bi = {(sj , Ej)}cj=1;

end
{(si, Ei)}ci=1 ← Bm;
/* inference */
oi ← F(P (tq, Ei),

⋃
Ij∈Ei

Ij);
Ai ← r(oi,y);
Âi ← Ai−mean(A)

var(A) ;
Optimize ff , fd with L;

end

listed below. First, we compute the logits for each expand-



ing token like the conventional beam search algorithm. Sub-
sequently, the standard beam search applies softmax to the
logits and selects the top-k candidates for the next expan-
sion. To make this process stochastic, we normalize all log-
its after the softmax step to serve as the sampling probabil-
ities, followed by random sampling. In this manner, supe-
rior tokens can retain their advantages, while the suboptimal
may be selected, thereby balancing exploration efficiency
with comprehensiveness.

logit = llm(tokens)
prob = F.normalize(softmax(logit),
dim = -1)

sum = prob.cumsum(dim = -1)
ids = torch.searchsorted(sum,
torch.rand(*sum.shape[:-1], c))

p = torch.gather(tokens, -1, ids)
# sequences: ids,
# possibilities: p

D. Details of Prompting
When using LVLM inference, it is necessary to construct
prompts. In our method, the parts that require prompt con-
struction include: the prompts during LLM inference and
the question-answer text embedding for both queries and
demonstrations. We list all prompts below. As prompts are
not the contributions of our work, we keep all prompts min-
imal. In practical tasks, the prompts can be further adjusted
to improve performance.

Prompt of Text Embeddings For demonstrations, the
prompt consists of images, questions, and answers:

<Image>
<Question>
<Answer>

For queries, the prompt consists of image and question only:

<Image>
<Question>

The prompted queries and demonstrations are encoded
by fe to get the features.

Prompt of LVLM Inference For inference, we follow in-
context learning and adopt the minimal prompt:

<#1 Demo Image>
<#1 Question>
<#1 Answer>
<#2 Demo Image>
<#2 Question>
<#2 Answer>
...
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Figure 1. Transfer performance of our proposed method and
similarity-based method on four benchmarks. We evaluate the
policies trained on four datasets on each of the four. The perfor-
mance of all methods decreases when using cross-dataset policies.
Due to larger training data, the performance of the similarity-based
method has advantages.

<Query Image>
<Query Question>

We adopt the base model for inference, which infers and
outputs predictions based on the query. In practical scenar-
ios, if a fine-tuned model is utilized, the prompts can be
adjusted, e.g., by introducing instructions, to achieve better
results.

E. Cross-Domain Performance

In addition to the performance on tasks of the same type, the
performance on cross-domain tasks and different models,
i.e., the transferability, is also an important aspect of eval-
uating the policy. Although heuristic algorithms generally
perform worse than learnable methods in some tasks, their
strong interpretability often provides an advantage in trans-
fer performance. We conduct experiments to explore the
performance of our method after data transfer on OKVQA
[5], TextVQA [8], Vizwiz [1] and MMStar [2] benchmarks.
The results are shown in Figure 1. As shown in figure,
1) whether using our method or similarity-based methods,
cross-data policies perform worse after transferring com-
pared to the one on the original dataset. For example, sig-
nificant performance degradation occurs in cross-data poli-
cies on Vizwiz and MMStar benchmarks; 2) the advantages



Table 1. Detailed transfer performance of our proposed method
on each sub-task of MMStar benchmarks. CP: coarse perception.
FP: fine-grained perception. IR: instance reasoning. LR: logic
reasoning.

Source Target - MMStar
CP FP IR LR ST MA

OKVQA 50.4 28.4 43.6 25.2 19.6 28.8
TextVQA 48.0 34.0 46.0 25.2 20.8 28.0

Vizwiz 50.8 34.0 43.6 23.6 18.8 28.0

MMStar 54.6 38.0 49.8 36.7 20.1 28.4

of our method become less pronounced after transferring.
This discrepancy may be attributed to the data distribution.
Heuristic similarity-based methods exhibit stable lower per-
formance across various data, while our method is more
affected by distribution changes yet yields better perfor-
mance. To obtain a policy suitable for general scenarios,
our method may require more diverse data for training.

To further explore the cross-domain performance, we re-
port detailed results on MMStar in Table 1. Although we
observe the performance degradation in Figure 1, the de-
tailed results reveal that the strategies do exhibit that trans-
ferability and universal strategies are feasible. The fine-
grained visual reasoning in TextVQA and Vizwiz trans-
fer well, leading to better performance on Fine-grained
Perception (FP) and Instance Reasoning (IR) compared to
OKVQA’s strategies.

F. Ablation Study of Beam Search Width
An important hyperparameter in beam search is the width,
which determines the breadth of the tree searching and af-
fects the exploration range of the policies. We conduct ab-
lation experiments to study its impact on performance. The
results are shown in Figure 3. As illustrated in the figure,
the performance exhibits a trend of first decreasing and then
increasing. We believe that when the width is low, the ex-
ploration range is limited, leading to unstable performance,
as evidenced by the fluctuations observed at widths of 2 and
4. As the width increases, the exploration range expands,
allowing the method to more readily identify superior poli-
cies, thereby resulting in a stable enhancement of perfor-
mance.

G. More Visualization
In Figure 4, we list additional visualizations of selected
demonstrations by ours, similarity-based method, and ran-
dom sampling. In Figure 4 (a), the demonstrations selected
by our method focus on describing object properties. Al-
though they are semantically far from the query, the ques-
tion structure is consistent with it, providing better cues.

What is the
maximum value of y?
Answer: 2

What is the
age gap
between them?
Answer: 9

What is the
maximum
value of y?
Answer: 5

What frog
shows a
warning color?
Answer: Q

How many
people are
visible?
Answer: Three

What is the maximum
value of y?
Answer: 2

What is the
maximum value 
of this function?
Answer: 1

What is the limit
as x approaches
-1?
Answer: 3

Calculate the
missing item
Answer: 1

✔
✗

✗

Demo #1 Demo #1Demo #2 Demo #2Q & A Q & A

(a) random (b) Ours (top) and similarity (bottom)

Figure 2. The visualization of bad predictions on math tasks by
ours. Both the similarity-based strategy and our approach fail,
while random selection succeeds.
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Figure 3. VQAScore on OKVQA benchmark with different beam
search width. Performance first decreases and then increases.

The LVLMs predict the correct results on random samples.
In contrast, while similarity policy selects similar demon-
strations, their questions are completely different, which
mislead LVLMs into predicting incorrect results. A simi-
lar situation also occurs in (c). In (d), both predictions of
LVLMs are correct, one focusing on the scene and the other
on human actions. However, when combined with image
semantics, we can understand that the question asks about
the former, which is more informative. Our method selects
appropriate demonstrations, allowing LVLMs to focus on
predicting the scene semantics, thereby obtaining the cor-
rect answer.

Next, to understand the lower performance on math
tasks, we collect the outputs of LVLMs on those questions.
One of the results is shown in Figure 2. Math problems
follow rigid rules where minor variations can lead to com-
pletely different solution paths. Related but non-isomorphic
demonstrations interfere with LVLMs’ understanding.

These examples further reveal that demonstration selec-
tion is challenging and cannot be simply solved based on
a single factor. After the few-shot demonstrations improve



the correctness of the output format, further performance
enhancement needs to take into account the complex inter-
action between the demos and the queries. This interac-
tion is difficult for humans to understand and design. Our
method can autonomously explore and exploit this, allevi-
ating the issue.
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Q: Why someone need to
be in the place of this photo?
A: sick

Q: Which of the items in
this tray contain protein?
A: chicken

Q: What does the giant g
stand for on this laptop?
A: google

Q: What was happening
here?
A: race

Q: Why someone need to
be in the place of this photo?
A: hospital

Q: Which of the items in
this tray contain protein?
A: fish

Q: What does the giant g
stand for on this laptop?
A: apple

Q: What was happening
here?
A: running

Q: Why someone need to
be in the place of this photo?
A: sick

Q: Which of the items in
this tray contain protein?
A: tofu

Q: What does the giant g
stand for on this laptop?
A: apple

Q: What was happening
here?
A: running

Q: Name remote model
shown in this picture?
A: samsung

Q: Why are these
bananas green?
A: Unripe

Q: What nutrient is
received from the food?
A: calcium

Q: What sport did this
originate from?
A: cricket

Q: What's the tall object in
the back of the photo?
A: windmill

Q: How is this dish
prepared?
A: stove top

Q: What kind of store are
these tools in?
A: hardware

Q: Is this after or before
school hours?
A: after

Q: Why is the man near
anothers neck?
A: fixng man neck tie

Q: What is a likely liquid to 
find in these glasses?
A: wine

Q: What is this sign used
for?
A: traffic control

Q: What type of day is it?
A: sunny

Q: What type of
skateboard is this?
A: standard

Q: How is this dish
prepared?
A: stove top

Q: What is the reason that
the trunk is in the water?
A: drink

Q: What brand of famous
donuts are these?
A: krispy kreme

Q: Was this bed made by
the owner or by a factory?
A: factory

Q: What food are the red
objects with the broccoli?
A: tomato

Q: What kind of book is
she looking at?
A: yearbookvv

Q: How do you score in
this game?
A: catch frisbee

Q: Which food is shown to
the left?
A: pie

Q: Is this a new or old
train?
A: old

Q: Is this a new or old
train?
A: old

Q: What's the tall object
in the back of the photo?
A: windmill

Demo #1 Demo #1Demo #2 Demo #2Q & A Q & A
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Figure 4. The visualization of selected demonstrations by ours, similarity-based method, and random sampling on the OKVQA dataset.
(a) Our demos focus on describing object properties, while similar demos mislead models to predict locations. (b) Our demos correct the
wrong predictions. (c) Our demos correct the wrong predictions, and similar demos result in non-existent objects. (d) Our demos suggest
models to predict the type of sports, which is more informative.
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