
Quad-Pixel Image Defocus Deblurring: A New Benchmark and Model
Supplementary Material

Hang Chen1 Yin Xie1 Xiaoxiu Peng1 Lihu Sun1 Wenkai Su1 Xiaodong Yang2 Chengming Liu2

1OMNIVISION, Wuhan, China 2OMNIVISION, Santa Clara, CA

In this supplementary material, we provide more details
about our method:
• Section 1 QPDD Dataset Details.
• Section 2 Defocus Blur and Disparity of QP Data.
• Section 3 Analysis of Model Complexity.
• Section 4 LAMB Details.
• Section 5 Implementation Details.
• Section 6 More Visual Comparison Results.
Our QPDD dataset and code will be released soon.

1. QPDD Dataset Details

We utilize a 50-megapixel QPD image sensor with a 1.0-
micron pixel size and 1/1.5” optical format to capture im-
ages. Our QPDD dataset includes 200 indoor scenes, com-
prising 4,935 pairs of images. Among these pairs, 2,689
pairs have a resolution of 2160 × 1280 pixels, 2,093 pairs
have a resolution of 1280 × 1792 pixels, and 153 pairs have
a resolution of 1080 × 1280 pixels. Some samples from this
dataset are shown in Fig. 1. Additionally, we offer 100 extra
multi-depth test images, each with a resolution of 4096 ×
3072 pixels, comprising 50 outdoor, 30 indoor, and 20 lab-
oratory scenes. Examples are presented in Fig. 2. Table 1
shows the overall comparisons between DPDD [1] and our
QPDD dataset. Our QPDD dataset provides more defocus
and all-in-focus image pairs with different resolutions. Fur-
thermore, we provide 100 extra multi-depth images to ver-
ify generalization performance.

Figure 1. Some scenes of the QPDD dataset.

Figure 2. Some scenes from the additional 100 multi-depth test
dataset of QPDD.

Dataset Total Nums Distributions Training Testing ValidationNums Resolutions

DPDD[1] 500 500 1680×1120 350 76 74

QPDD 4935
2689 2160 × 1280

3735 600 + 100 6002093 1280 × 1792
153 1080 × 1280

Table 1. Comparisons between DPDD and QPDD datasets.

2. Defocus Blur and Disparity of QP Data

To demonstrate that the disparity provided by the four-view
(L, R, T, B) inputs of QP data is more robust than that pro-
vided by the two-view (L, R) inputs, we conduct the fol-
lowing experiments. First, we adjust the parameters of the
VCMs with a fixed step size to obtain a sequence of images
with gradually varying blur levels. We then calculate the
disparity of the selected windows for different views in each
frame using the normalization cross-correlation (NCC) [6]
matching algorithm. As shown in Fig. 3 (b), both two-
view (L, R) inputs and four-view (L, R, T, B) inputs ex-
hibit a good linear relationship between disparity and defo-
cus blur in vertical textures. However, in horizontal textures
(see Fig. 3 (c)), the disparity results from two-view (L, R)
inputs show significant fluctuations, while the four-view (L,
R, T, B) inputs still maintain a good linear relationship be-
tween disparity and defocus blur. Disparity is correlated
to the amount of defocus blur. Four-view inputs provide
more robust disparity estimation compared to two-view in-
puts, enabling better guidance for defocus deblurring.



© 2022 OMNIVISION | Security B: For Internal Use Only2

Win1 Win2

(b) (c)(a)

Win1

Win2

Figure 3. Analysis on defocus blur and disparity. (a) Adjust the VCMs position in fixed steps to capture a sequence of images with
gradually varying blur levels, and select two regions, win1 and win2, for disparity calculation. (b) Disparity results of win1. (c) Disparity
results of win2. The x-axis represents the VCM positions corresponding to the images, which have a linear relationship with defocus blur.
The y-axis represents the disparity of the images. The ’two-view’ indicates that the disparity is calculated using the L and R views. The
’four-view’ indicates that the disparity is calculated using the L, R, T and B views.

3. Analysis of Model Complexity

Furthermore, we provide a comprehensive complexity anal-
ysis of our method (see Tab. 2), presenting the num-
ber of parameters, and measuring the computational cost
using FLOPs (with image size at 1120 × 1680). We
also provide the number of parameters and computational
costs of other methods, including DPDNet [1], RDPD [2],
IFAN [8], DRBNet [12], BaMBNet [9], Restormer [16],
LaKDNet [13], and K3DN [14], for reference. The PSNR
values obtained from testing on the DPDD dataset are also
provided as a reference. As shown in Tab. 2, compared to
CNNs-based methods (RDPD [2], IFAN [8], DRBNet [12],
and BaMBNet [9]), our computational cost has signifi-
cantly increased, but the performance improvement is also
substantial. However, compared to the Transformer-based
method Restormer [16], the large kernel-based method
LaKDNet [13], and the disparity-based method K3DN [14],
our computational cost is relatively lower, and our perfor-
mance is better.

For DP data, the L and R views are input into the two-
branch encoder of LMNet with shared parameters sepa-
rately. For QP data, the L and R views are concatenated, as
well as the T and B views. Each concatenated pair is then
fed separately into the two-branch encoder without shared
parameters. Due to the different weight training methods
used in the two-branch encoder, the QP-based LMNet has
5.68M more parameters compared to the DP-based LMNet,
but both models have almost the same computational cost.

Method PSNR↑ Params (M)↓ FLOPs (G)↓

DPDNetD [1] 25.13 31.03 3150
RDPDD [2] 25.39 24.28 901
IFAND [8] 25.99 10.48 794

DRBNetD [12] 26.33 11.69 1273
BaMBNetD [9] 26.40 4.50 1804

RestormerD [16] 26.66 26.13 4458
LaKDNetD [13] 26.89 38.42 5168

K3DND [14] 27.06 15.90 3352

OursD 27.25 18.18 3227
OursQ - 23.86 3231

Table 2. Comparisons of model complexity. The suffix D indicates
two-view (L, R) inputs, and the suffix Q indicates four-view (L, R,
T, B) inputs.

4. Local-gate assisted Mamba Block Details
Inspired by the continuous linear time-invariant (LTI) sys-
tems, the state space models (SSMs), such as structured
state space sequence model (S4) [4] and Mamba [3], map a
1-dimensional function or sequence x(t) ∈ R → y(t) ∈ R
through a hidden state h(t) ∈ RN . These models can be
formulated as linear ordinary differential equations (ODEs)
as follows:

h′(t) = Ah(t) + Bx(t),
y(t) = Ch(t).

(1)

where N is the state size, A ∈ RN×N is the evolution pa-
rameter, B ∈ RN×1 and C ∈ R1×N are the projection pa-



rameters.
To integrate SSMs into deep learning algorithms, the

continuous differential equations are converted to discrete
version. Denote ∆ as the timescale parameter, the con-
tinuous parameters A and B are transformed into discrete
parameters A and B using the zero-order hold (ZOH) rule,
which are defined as follows:

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B.
(2)

After the discretization, the discretized version of Eq. (2)
using a step size ∆ can be rewritten as:

ht = Aht−1 + Bxt,

yt = Cht.
(3)

Furthermore, the iterative process delineated in Eq. (3)
can be expedited through parallel computation, employing
a global convolution operation:

K = (CB,CAB, ...,CAk−1B),

y = x ⊛ K.
(4)

where k is the length of the input sequence x, ⊛ denotes
convolution operation, and K ∈ Rk is a structured convolu-
tional kernel.

Despite the efficiency brought by discretization, param-
eters (∆, A, B, C) in SSMs are data-independent and time-
invariant, limiting the expressiveness of the hidden state to
compress seen context. Recently, Mamba [3] introduces
a selection mechanism into SSM, making the parameters
data-dependent, thus allowing for a dynamic feature repre-
sentation. In addition, the parallel scanning allows Mamba
to facilitate efficient training. The architecture of Mamba is
shown in Fig. 4.

© 2022 OMNIVISION | Security B: For Internal Use Only7

L
in

ea
r

L
in

ea
r

C
on

v1
d

S
iL

U
 

S
S

M
 

S
iL

U
 

L
in

ea
r

Element-wise product 

Figure 4. The structure of Mamba block. Based on tradi-
tional SSM, Mamba adds a SiLU activation similar to the Gated
MLP [10], which allows the model to fuse and select information
across tokens. At the same time, the Linear and Conv layers allow
the model to learn data-dependent parameters.

The Mamba block achieves linear scalability in sequence
length and delivers competitive performance in language
modeling tasks. To apply Mamba for visual tasks, some
methods [5, 7, 11] adopt a 2D Selective Scan strategies

with four or more directions to flatten 2D images into 1D
sequences. The flattening strategy causes some spatially
close pixels in the 2D feature map to become widely sep-
arated in the 1D token sequence, leading to local pixel for-
getting. Furthermore, Mamba introduces a larger number
of hidden states to capture long-range dependencies, which
can lead to channel redundancy. The motivation behind our
Local-gate assisted Mamba Block (LAMB) design is to ex-
plore Mamba to capture long-range dependencies with lin-
ear complexity, and to design a Local Gate Module (LGM)
that reduces local pixel forgetting and channel redundancy
within Mamba. By integrating the features from a bidi-
rectional SSM [17] and LGM using learnable weights, the
LAMB enables a more enhanced capture of global and local
dependencies.

5. Implementation Details
Our LMNet is implemented in PyTorch framework, and all
training and experimental procedures are conducted on two
NVIDIA RTX 3090 GPUs. The configurations of our model
are in Tab. 3.

Stage Level LAMB Nums Channel Nums Spatial Dimension

1 N1 = 4 48 H ×W
2 N2 = 6 96 H/2×W/2
3 N3 = 6 192 H/4×W/4

Enhancement N4 = 8 192 H/4×W/4

Table 3. Configurations of LMNet. Each level of encoder and de-
coder is composed of N LAMBs, where N ∈ {N1, N2, N3}. At
the third level, following the third SFM, there is a feature enhance-
ment module consisting of N4 LAMBs. The number of feature
channels in the first level is M = 48. H and W are the image
height and width.

6. More Visual Comparison Results
We provide more visual comparisons on DPDD dataset [1]
(see Fig. 5 and Fig. 6) and our proposed QPDD dataset
(see Fig. 7, Fig. 8, and Fig. 9). All the presented re-
sults are based on experimental methods that are consistent
with the descriptions in the main text of the paper. For the
DPDD dataset, we compare our LMNet with several recent
state-of-the-art dual-pixel (DP) based defocus deblurring
methods, including RDPD [2], IFAN [8], MIRNetV2 [15],
Restormer [16], and LaKDNet [13]. Note that we use their
publicly available checkpoints to generate the all-in-focus
restorations. From Fig. 5 and Fig. 6, we can see that our
method is effective for removing spatially varying defocus
blur. For the QPDD dataset, two representative classic defo-
cus deblurring methods, Restormer [16] and LaKDNet [13],
are used as references. To ensure a fair comparison, we re-
train these two methods using the two-view (L, R) sRGB



images in the QPDD dataset following their own setup. For
our LMNet, we provide two sets of results: one trained with
two-view (L, R) inputs and the other trained with four-view
(L, R, T, B) inputs. As shown in Fig. 7, Fig. 8, and Fig. 9,
our method with four-view inputs recovers more details of
the textures and edges compared to other methods.

References
[1] Abdullah Abuolaim and Michael S. Brown. Defocus deblur-

ring using dual-pixel data. In European Conference on Com-
puter Vision, pages 111–126. Springer, 2020. 1, 2, 3

[2] Abdullah Abuolaim, Mauricio Delbracio, Damien Kelly,
Michael S Brown, and Peyman Milanfar. Learning to re-
duce defocus blur by realistically modeling dual-pixel data.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 2289–2298, 2021. 2, 3,
5, 6

[3] Albert Gu and Tri Dao. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023. 2, 3

[4] Albert Gu, Karan Goel, and Christopher Ré. Efficiently
modeling long sequences with structured state spaces. arXiv
preprint arXiv:2111.00396, 2021. 2

[5] Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong
Ren, and Shu-Tao Xia. Mambair: A simple baseline for
image restoration with state-space model. arXiv preprint
arXiv:2402.15648, 2024. 3

[6] Heiko Hirschmuller and Daniel Scharstein. Evaluation of
stereo matching costs on images with radiometric differ-
ences. IEEE transactions on pattern analysis and machine
intelligence, 31(9):1582–1599, 2008. 1

[7] Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian,
and Chang Xu. Localmamba: Visual state space model with
windowed selective scan. arXiv preprint arXiv:2403.09338,
2024. 3

[8] Junyong Lee, Hyeongseok Son, Jaesung Rim, Sunghyun
Cho, and Seungyong Lee. Iterative filter adaptive network
for single image defocus deblurring. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2034–2042. IEEE, 2021. 2, 3, 5,
6

[9] Pengwei Liang, Junjun Jiang, Xianming Liu, and Jiayi Ma.
Bambnet: A blur-aware multi-branch network for dual-
pixel defocus deblurring. IEEE/CAA Journal of Automatica
Sinica, 9(5):878–892, 2022. 2

[10] Hanxiao Liu, David R. So Zihang Dai, and Quoc V. Le. Pay
attention to mlps. arXiv preprint arXiv:2105.08050, 2021. 3

[11] Yang Liu, Jiahua Xiao, Yu Guo, Peilin Jiang, Haiwei Yang,
and Fei Wang. Hsidmamba: Exploring bidirectional state-
space models for hyperspectral denoising. arXiv preprint
arXiv:2404.09697, 2024. 3

[12] Lingyan Ruan, Bin Chen, Jizhou Li, and Miu-Ling Lam.
Learning to deblur using light field generated and real de-
focus images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
16283–16292. IEEE, 2022. 2

[13] Lingyan Ruan, Mojtaba Bemana, Hans-peter Seidel, Karol
Myszkowski, and Bin Chen. Revisiting image deblurring
with an efficient convnet. arXiv preprint arXiv:2302.02234,
2023. 2, 3, 5, 6, 7, 8, 9

[14] Y. Yang, L. Pan, L. Liu, and M. Liu. K3dn: Disparity-aware
kernel estimation for dual-pixel defocus deblurring. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 13263–13272, 2023.
2

[15] S. Zamir, A. Arora, S. Khan, M. Hayat, F. Khan, M. Yang,
and L. Shao. Learning enriched features for fast image
restoration and enhancement. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 45(02):1934–1948,
2022. 3, 5, 6

[16] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5728–5739, 2022. 2, 3, 5, 6, 7, 8, 9

[17] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang,
Wenyu Liu, and Xinggang Wang. Vision mamba: Efficient
visual representation learning with bidirectional state space
model. arXiv preprint arXiv:2401.09417, 2024. 3



Input

Input

Input

Input

Blurred Image

Restormer[16]

Blurred Image

Restormer[16]

Blurred Image

Restormer[16]

Blurred Image

Restormer[16]

RDPD[2]

LaKDNet[13]

RDPD[2]

LaKDNet[13]

RDPD[2]

LaKDNet[13]

RDPD[2]

LaKDNet[13]

IFAN[8]

Ours

IFAN[8]

Ours

IFAN[8]

Ours

IFAN[8]

Ours

MIRNetV2[15]

Sharp Image

MIRNetV2[15]

Sharp Image

MIRNetV2[15]

Sharp Image

MIRNetV2[15]

Sharp Image

Figure 5. Comparisons of defocus deblurring performance on the DPDD dataset. All the networks take DP images as the inputs. From left
to right: Blurred Image, RDPD [2], IFAN [8], MIRNetV2 [15], Restormer [16], LaKDNet [13], Ours (LMNet), and Sharp Image.



Input

Input

Input

Input

Blurred Image

Restormer[16]

Blurred Image

Restormer[16]

Blurred Image

Restormer[16]

Blurred Image

Restormer[16]

RDPD[2]

LaKDNet[13]

RDPD[2]

LaKDNet[13]

RDPD[2]

LaKDNet[13]

RDPD[2]

LaKDNet[13]

IFAN[8]

Ours

IFAN[8]

Ours

IFAN[8]

Ours

IFAN[8]

Ours

MIRNetV2[15]

Sharp Image

MIRNetV2[15]

Sharp Image

MIRNetV2[15]

Sharp Image

MIRNetV2[15]

Sharp Image

Figure 6. Comparisons of defocus deblurring performance on the DPDD dataset. All the networks take DP images as the inputs. From left
to right: Blurred Image, RDPD [2], IFAN [8], MIRNetV2 [15], Restormer [16], LaKDNet [13], Ours (LMNet), and Sharp Image.



Input

Input

Input

Input

Blurred Image

OursD

Blurred Image

OursD

Blurred Image

OursD

Blurred Image

OursD

RestormerD[16]

OursQ

RestormerD[16]

OursQ

RestormerD[16]

OursQ

RestormerD[16]

OursQ

LaKDNetD[13]

Sharp Image

LaKDNetD[13]

Sharp Image

LaKDNetD[13]

Sharp Image

LaKDNetD[13]

Sharp Image

Figure 7. Comparisons of defocus deblurring performance on the QPDD dataset. The suffix D indicates two-view (L, R) inputs, and the
suffix Q indicates four-view (L, R, T, B) inputs. From left to right: Blurred Image, RestormerD [16], LaKDNetD [13], OursD , OursQ,
and Sharp Image.



Input

Input

Input

Input

Blurred Image

OursD

Blurred Image

OursD

Blurred Image

OursD

Blurred Image

OursD

RestormerD[16]

OursQ

RestormerD[16]

OursQ

RestormerD[16]

OursQ

RestormerD[16]

OursQ

LaKDNetD[13]

Sharp Image

LaKDNetD[13]

Sharp Image

LaKDNetD[13]

Sharp Image

LaKDNetD[13]

Sharp Image

Figure 8. Comparisons of defocus deblurring performance on the QPDD dataset. The suffix D indicates two-view (L, R) inputs, and the
suffix Q indicates four-view (L, R, T, B) inputs. From left to right: Blurred Image, RestormerD [16], LaKDNetD [13], OursD , OursQ,
and Sharp Image.



Input

Input

Input

Input

Blurred Image

OursD

Blurred Image

OursD

Blurred Image

OursD

Blurred Image

OursD

RestormerD[16]

OursQ

RestormerD[16]

OursQ

RestormerD[16]

OursQ

RestormerD[16]

OursQ

LaKDNetD[13]

Sharp Image

LaKDNetD[13]

Sharp Image

LaKDNetD[13]

Sharp Image

LaKDNetD[13]

Sharp Image

Figure 9. Comparisons of defocus deblurring performance on the QPDD dataset. The suffix D indicates two-view (L, R) inputs, and the
suffix Q indicates four-view (L, R, T, B) inputs. From left to right: Blurred Image, RestormerD [16], LaKDNetD [13], OursD , OursQ,
and Sharp Image.


	QPDD Dataset Details
	Defocus Blur and Disparity of QP Data
	Analysis of Model Complexity
	Local-gate assisted Mamba Block Details
	Implementation Details
	More Visual Comparison Results

