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1. Additional experiments
We provide an additional comparison on the fine-grained
dataset CUB-200 in Table 1. CUB-200 [3] has 200 classes,
with 11,788 images in total. We utilize ResNet18 (without
pretraining) as the backbone, and set the memory buffer to
20 exemplars per class for all methods. We evaluate the
proposed method on B0 Inc20 and B100 Inc20. In a highly
similar scenario, our method surpasses other methods. It
outperforms PsHD (NeurIPS’ 2024) [1] up to 4.88% on av-
erage accuracy, which benefits from the proposed architec-
ture and the separation loss that jointly learn class-specific
subspaces.

Table 1. Comparison on a fine-grained dataset CUB-200.

Methods B0 Inc20 B100 Inc20
#P Last Avg #P Last Avg

BEEF 111.70 49.07 56.15 67.02 63.73 66.11
DSGD 111.70 58.10 59.75 67.02 67.35 68.80
PsHD 111.70 57.29 59.77 67.02 68.07 68.97

CREATE 17.72 58.78 60.81 17.72 70.82 73.85

2. Additional ablation study
2.1. Impact of exemplar size
We conduct additional ablation experiments to evaluate the
performance by varying the size of the exemplar set. In
the CIFAR100 Base50 Inc10 setting, we record the perfor-
mance with 20, 10, 5, and 3 exemplars stored for each class,
as shown in Fig. 1(a). When the number of exemplars per
class (EPC) is reduced from 20 to 10, the final accuracy
decreases from 68.4% to 67.53%, indicating stable perfor-
mance. When the EPC is dramatically reduced to only 3 ex-
emplars per class, the average accuracy drops from 75.52%
to 73.55%, resulting in a tolerable decrease of 1.97%.

2.2. Comparisons with exemplar-free methods
Our proposed method is efficient and can achieve compet-
itive performance compared with exemplar-free methods
when adapted to lower storage or cost requirements. Fe-
CAM [2] is the SOTA of the exemplar-free methods, which
proposes a feature covariance-aware metric based on pro-
totypes for CIL. It stores a covariance matrix for each old
class (106 MB in total), therefore, its memory cost is sig-
nificantly higher than that of our proposed method CRE-
ATE when storing 3 exemplars per class (0.87 MB in to-
tal). PASS [4] freezes the backbone after the initial learn-
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Figure 1. Additional ablation study on different exemplar sizes
and other baselines. The values in the parentheses in the legend
represent the average accuracy. “EPC” is an abbreviation for “ex-
emplars per class”.

ing phase and stores one prototype for each class in the
feature space. It requires 0.19 MB of memory but de-
mands additional computation to implement self-supervised
learning, augments rotation-based transformations for new
samples, and adds Gaussian noise for prototypes. The ex-
perimental results are shown in Fig. 1(b). In the com-
mon exemplar-based setting, Ours-20EPC (20 exemplars
per class) achieves a gain of 4.45% and 9.0% compared
with FeCAM and PASS. Additionally, when converted to
the corresponding memory overhead, Ours-3EPC (3 exem-
plars per class) shows a 2.48% improvement over FeCAM
with a 99.18% reduction in storage cost and a 7.03% im-
provement over PASS with lower costs to learn new classes.

We also analyze the effectiveness of the LCR loss in the
feature space without the reconstruction module, referred to
as NME + LCR. Experimental results indicate that using
the LCR loss independently in feature space can also im-
prove the performance of CIL by 1.27%.

2.3. Analysis of stability and plasticity
To evaluate the performance improvements stemming from
enhanced knowledge acquisition or reduced forgetting of
the framework, we compare DER, BEEF, and our pro-
posed method. The experiments are conducted using the
CIFAR100 Base50 Inc50 set-up, where the number of old
classes is the same as that of new classes. We evaluate the
accuracy of old classes, new classes, and the overall ac-
curacy. The experimental results are presented in Fig. 2.
Our proposed method shows a 1.54% gap in learning new
classes compared to previous methods, but it achieves ap-
proximately a 5% improvement in retaining old classes,



significantly reducing the forgetting of old classes. Our
method achieves a better balance between stability and plas-
ticity.

3. Pseudo code

In Algorithm 1, we present the pseudo code for our pro-
posed method CREATE.

Algorithm 1 CREATE

Require: Dataset set D = {D1,D2, ...,DT }, seen class
number in each phase C = {C1, C2, ..., CT }, mem-
ory buffer Mt, feature extractor ϕt, classifier θt, and
auto-encoder module AEi.

1: for task t ∈ [1, 2, ..., T] do
2: if t==1 then
3: Training set D̂t ← D1

4: Create AEi for new class i, i = {0, ..., C1}
5: Calculate cross-entropy loss LCE ▷ Eq. (3)
6: Calculate confusion-reduce loss LCR ▷ Eq. (8)
7: Train ϕt and θt by loss L = LCE + LCR

8: else
9: Training set D̂t ← Dt

⋃
Mt

10: Freeze ϕt−1, θt−1, unfreeze ϕt,
11: Create AEi for new class i, i = {Ct−1, ..., Ct}
12: Calculate cross-entropy loss LCE ▷ Eq. (3)
13: Calculate knowledge distillation loss LKD ac-

cording to the logits of (ϕt−1, θt−1) ▷ Eq. (4)

14: Calculate confusion-reduce loss LCR ▷ Eq. (8)
15: Train ϕt and θt by loss L = LCE +LKD+λLCR

▷ Eq. (9)
16: Freeze ϕt

17: Training set D′

t ← sample a class-balanced subset
from Mt−1 and Dt

18: Fine-tune θt by Eq. (9)
19: end if
20: Old feature extractor ϕt−1 ← ϕt

21: Old classifier θt−1 ← θt
22: Mt−1 ←Mt

23: end for
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