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A. Video Results
Please refer to our project page: https://vdm-evfi.
github.io/ for video results, which clearly demonstrate
that our reconstructions provide superior consistency and
generalization compared to other baselines.

B. Video Generation Task Results
As explained in the main paper, our method supports Event-
based Video Generation, an extrapolation task that relies on
only one frame (start or end) and events, unlike interpolation,
which uses both frames. This constraint in video generation
leads to error accumulation in the generated video, as shown
in the last video of the website. We present a comparison of
video generation and interpolation results on the BS-ERGB
dataset, for video generation, only the left-end frame next to
skip frames and corresponding events are used to generate
the skipped frames, as shown in Table 1, relying on informa-
tion from only one side instead of both start and end frames
causes the PSNR and SSIM metrics to drop significantly
compared to the interpolation results.

We also show a qualitative comparison in Figure 1, as we
can see because the video generation task is a extrapolation

Task BS-ERGB (3 skips)

PSNR ↑ SSIM ↑ LPIPS ↓
Video Generation 25.79 0.84 0.11

Video Interpolation 27.74 0.88 0.12

Table 1. Comparison of our pipeline’s performance on Video Gen-
eration and Video Interpolation tasks on the BS-ERGB dataset.

task that only uses the information from one side (start or
end frame) of frames and events, it cannot avoid hallucina-
tion for the occluded/missing parts that are not present in
the condition image. In contrast, the video generation task
can mitigate the hallucination well by using complementary
information from both frames. In addition to hallucination,
relying on frame information from only one side leads to
error accumulation during generation, as shown in Figure
2, the results in video generation (incorrect color accumu-
lation on the finger) are inconsistent with the information
provided by the frame on the other side. In contrast, inter-
polation ensures the reconstructed video remains consistent
with the information from both frames. The comparison of
video consistency is best observed in the last video of the
website, which compares event-based video generation with
event-based video interpolation.

C. Clear-Motion Test Sequences
To robustly evaluate the zero-shot generalization perfor-
mance of all models on unseen real-world event-based video
frame interpolation scenarios, we collected the Clear-Motion
Test Sequences solely for testing purposes.

C.1. Event-RGB Aligned Video Capture Setup
In this section, we will present the capture setup for our
event-rgb aligned video sequences, as shown in Figure 3.

We use the Prophesee EVK4 HD as our event camera,
offering a capture resolution of 1280 × 720. For the RGB
camera, we use the BFS-U3-31S4C-C Blackfly S, which
provides a resolution of 2048 × 1536 and supports up to 55
frames per second (fps). To align the field of view for both
cameras, we utilize the Thorlabs CCM1-BS013 30 mm Cage

https://vdm-evfi.github.io/
https://vdm-evfi.github.io/
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Figure 1. An example illustrating the difference between event-
based video generation, which relies solely on the start frame, and
event-based video interpolation, which uses both start and end
frames to infer the interpolated frames. We present the 3rd, 6th,
and 9th interpolated frames for the 11 skips interpolation between
start and end frames on Clear-Motion test sequences. In the video
generation scenario, the model hallucinates the occluded parts
behind the paper due to the lack of information in the start frame.
In contrast, video interpolation avoids hallucination as the end
frame provides the necessary information.

Cube-Mounted Non-Polarizing Beam Splitter. Additionally,
we perform spatial and temporal alignment to synchronize
the events with the captured RGB frames. After the spatial
alighment, our final captured RGB frames aligned with event
are of resolution 940 × 720 and 40 fps.

C.2. Details of Data Sequence
The Clear-Motion test sequences are designed to include
clear and large motions, encompassing both camera and
object movements, as well as objects and motion patterns
distinct from those found in most existing real-world Event-
based Video Frame Interpolation (EVFI) datasets [2, 4, 5].
This setup enables a straightforward evaluation of the gen-
eralization and consistency of various video frame interpo-
lation methods. Table 2 provides details of our collected
test sequences, including explanations for each sequence.
Category (i) represents sequences with object motion, while
Category (ii) represents sequences with camera motion. We
also include a Figure 4 to show some example data in our
test sequences.

D. The Impact of Input Upsampling
As discussed in the main paper, to mitigate the loss of ap-
pearance and motion control accuracy caused by the conver-
sion between downsampled latent space and pixel space in
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Figure 2. An example illustrating the difference in video consis-
tency between event-based video generation and interpolation for
11 skips between start and end frames on Clear-Motion test se-
quences, we present the 5th, 8th, and 11th interpolated frames. In
the video generation task, color errors on the finger accumulate
over time, with the 11th frame (the final interpolated frame) failing
to align with the information in the end frame. In contrast, inter-
polation reduces error accumulation and ensures consistency by
leveraging information from both the start and end frames.
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Figure 3. An illustration of our capture setup for the Clear-Motion
test sequences of Event-RGB aligned video sequences. The setup
consists of three main components: an event camera, an RGB
camera, and a beam splitter to align the field of view for both
cameras.

Latent Diffusion Models (LDM) [1], we employ test-time
optimization in the Per-tile Denoising and Fusion process.
This involves first upsampling the input image and event
representations by a specified factor and then breaking them
into fixed-size overlapping tiles before feeding them into



Sequence #Frames Explanation Category

Paper_Shifting 200 The translational and 3D rotational motion of a paper with a simple texture (i)
Paper_Waving 200 The waving and 3D rotational motion of a paper with a simple texture (i)

Paper_Deforming 200 The deformation motion of a paper with a simple texture (i)
Camera_Far 200 The moving cameras capturing distant objects (ii)

Camera_Close 200 The moving cameras capturing nearby objects (ii)
Checkerboard_Planar 200 The planar translation and rotation of a nearby dense checkerboard (i)
Checkerboard_Depth 200 The motion of a checkerboard along the depth direction (i)

Checkerboard_3D 200 The 3D translation and rotation of a nearby dense checkerboard (i)
Texture_Box 200 The translation and rotation of a nearby highly textured box (i)

Table 2. A detailed description of our collected Clear-Motion test sequences, with sequence name, number of frames and explanation of each
sequence. Category (i) includes sequences with object motion, while Category (ii) includes sequences with camera motion.

Figure 4. An illustration of example frames overlaid with events
from Clear-Motion test sequences.

the video diffusion process. The performance comparison
across different upsampling factors is shown in Table 3. As
the upsampling factor increases from 1 to 2, our model’s
performance improves significantly, with PSNR increasing
by approximately 3 dB, SSIM by 0.11, and LPIPS decreas-
ing by 0.03. These results demonstrate the effectiveness of
upsampling in the Per-tile Denoising and Fusion process,
enhancing both the details in reconstructed frames and the
accuracy of event-based motion control.

Method BS-ERGB (3 skips)

PSNR ↑ SSIM ↑ LPIPS ↓
Ours_1 24.82 0.77 0.15

Ours_1.5 25.86 0.82 0.16
Ours_2 27.74 0.88 0.12

Table 3. Comparison of the impact of different upsampling factors
{1, 1.5, 2} on our model’s performance on the BS-ERGB dataset.
We use 512 × 320 overlapping tiles with a overlapping ratio 0.1
for the input image and event representations.

To qualitatively assess the effect of upsampling, Figure 5

shows that as the upsampling factor increases from 1 to 2, de-
tails on the human eyes and fingers (e.g., nails and textures)
improve significantly. Both quantitative and qualitative re-
sults highlight the effectiveness of upsampling in the Per-tile
Denoising and Fusion process, enhancing the realism and
event-based motion control accuracy of video interpolation
results.

(a)

(b)

(c)

Figure 5. An illustration showcasing the qualitative impact of input
upsampling factors. The leftmost image is the reference frame. (a)
shows the interpolated result with an upsampling factor of 1, (b)
with a factor of 1.5, and (c) with a factor of 2. As the upsampling
factor increases from 1 to 2, the details on the human eyes and
fingers, highlighted by red arrows, improve significantly.

E. More Visual Results
In this section, we provide additional visual results show-
casing qualitative comparisons between our method and the
baselines, as shown in Figures 6, 7, 8, 9, 10, and 11.

F. Additional Implementation Details
In this section, we provide additional implementation details.
The pre-trained video diffusion model we used is Stable
Video Diffusion [1] for 14-frame image-to-video genera-
tion. We trained our model with an effective batch size of



(a) Illustration of start frame, end frame and events in-between overlayed with reference frames  

(b) PerVFI (c) DynamiCrafter

(d) GIMM-VFI (e) Ours

Figure 6. Additional baseline results on the Clear-Motion sequence Paper_Waving.

(a) Illustration of start frame, end frame and events in-between overlayed with reference frames  

(b) PerVFI (c) InterpAny-Clearer

(d) RIFE (e) Ours

Figure 7. Additional baseline results on the BS-ERGB sequence as presented in the main paper.



(a) Illustration of start frame, end frame and events in-between overlayed with reference frames  
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Figure 8. An illustration showcasing the qualitative comparison on the Clear-Motion sequence Camera_Far, which involves large camera
motion capturing distant objects, with 11 skips between the start and end frames. We present the interpolated 4th, 7th, and 10th frames.
(Zoom in for the best viewing experience)

(a) Illustration of start frame, end frame and events in-between overlayed with reference frames  

(b) GIMM-VFI (c) Time Reversal

(d) CBMNet-Large (e) Ours

Figure 9. An illustration showcasing the qualitative comparison on the Clear-Motion sequence Camera_Close, which involves large camera
motion capturing nearby objects, with 11 skips between the start and end frames. We present the interpolated 4th, 7th, and 10th frames.
(Zoom in for the best viewing experience)



(a) Illustration of start frame, end frame and events in-between overlayed with reference frames  

(b) GIMM-VFI (c) Time Reversal

(d) CBMNet-Large (e) Ours

Figure 10. An illustration showcasing the qualitative comparison on the Clear-Motion sequence Checkerboard_Planar, which involves large
planar motion of a nearby checkerboard, with 11 skips between the start and end frames. We present the interpolated 4th, 7th, and 10th
frames. (Zoom in for the best viewing experience)

(a) Illustration of start frame, end frame and events in-between overlayed with reference frames  

(b) RIFE (c) Time Reversal

(d) CBMNet-Large (e) Ours

Figure 11. An illustration showcasing the qualitative comparison on the HQF dataset for the sequence poster_pillar_1, involving moving
cameras capturing nearby posters, with 3 skips between the start and end frames. All interpolated frames are presented. (Zoom in for the
best viewing experience)



Method Run Time (s) Memory Usage (GB) Parameters (M)

RIFE 0.5 0.9 9.8
CBMNet-Large 41.7 17.8 22.2
Time-Reversal 62.6 21.5 1524.6

PerVFI 9.3 5.2 13.9
InterpAny-Clearer 0.5 1.1 10.7

DynamiCrafter 92.0 18.3 1438.9
EMA-VFI 1.8 4.8 65.7

GIMM-VFI 3.0 9.5 19.8
Ours 200.1 17.2 2206.8

Table 4. Model Run Time, Memory, and Parameter comparison.

64, using a batch size of 4 per GPU and a gradient accu-
mulation factor of 16. Training was conducted solely on
the BS-ERGB dataset, and the model was tested on other
unseen datasets without fine-tuning. All training was per-
formed on 4 NVIDIA RTX A6000 GPUs, each with 50GB
of memory. For training, we use the AdamW optimizer [3]
with a learning rate of 5 × 10−5 and parameters β1 = 0.9,
β2 = 0.999, ϵ = 1× 10−8, and a weight decay of 1× 10−2.
Our model is trained on the BS-ERGB dataset for 72 hours
to denoise noisy video latents for 3 and 11 skipped frames.
All testing and inference on unseen data or datasets are con-
ducted without fine-tuning, using the checkpoint trained on
the BS-ERGB dataset.

During training and testing, the input to our adapted video
diffusion model consists of 512 × 320 size tiles. Our model
is trained solely to denoise/generate video latents using start
frames and forward-time events. For testing and inference,
we use an overlapping ratio of 0.1 for overlapping tiles and
set the number of denoising steps in the video diffusion
process to 25. The Per-tile Denoising and Fusion (for high-
resolution frame reconstruction and event-based motion con-
trol) and Two-side Fusion (for converting video generation
to interpolation) are both test-time optimization processes
that do not require additional training.

G. Model Run Time, Memory, and Parameter
Comparison

Table 4 reports testing results for all models run on a single
NVIDIA RTX 4090 GPU. Each method generated 1024×
576 frames with run time averaged over 16 frames. VDM
based methods (Time-Reversal, DynamiCrafter, and Ours)
are more memory-intensive and time-consuming than other
methods.
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