
Rethinking Temporal Fusion with a Unified Gradient Descent View for
3D Semantic Occupancy Prediction

Supplementary Material

A. Derivation of the Gradients
A.1. Gradient Computation for Scene-Level Temporal Fusion

Consider a normalized transformation function fs : Rc×N → Rc×N defined as:

fs(X) = γ ⊙Norm(WX+ b) + β +X, (A.1)

where γ, β ∈ Rc×1 are learnable scale and shift parameters, W ∈ Rc×c is a weight matrix, b ∈ Rc×1 is a bias vector, and
⊙ denotes the Hadamard product. Norm(·) represents the Z-score normalization function across the channel dimension. We
seek to minimize the loss function Ls, defined as:

Ls = ∥fs(Q1V
t)−Q2V

t∥2F , (A.2)

where Q1,Q2 ∈ Rc×c are given matrices and Vt ∈ Rc×N . Here, ∥ · ∥F denotes the Frobenius norm. To facilitate the
gradient computation Ht

s = −ηs∇γ,β,W,bLs, we introduce the following intermediary terms:

∆1 = fs(Q1V
t)−Q2V

t, (A.3)

Z = WQ1V
t + b1⊤

n , (A.4)

where 1n ∈ Rn×1 denotes a vector of ones. The loss function can then be expressed as:

Ls =
1

nc
tr(∆⊤

1 ∆1). (A.5)

Let Ẑ = Norm(Z), we have:

Ẑ = (Z− µ)⊘ σ, (A.6)

µ =
1

n
1⊤
c Z, (A.7)

σ2 =
1

n
1⊤
c (Z− 1cµ)

2
, (A.8)

where ⊘ denotes Hadamard division. The function fs can then be written as:

fs(Q1V
t) = γ ⊙ Ẑ+ β +Q1V

t. (A.9)

The gradient of the loss with respect to fs is:
∂Ls

∂fs
= 2∆1. (A.10)

The gradients with respect to the learnable parameters γ and β are:

∂Ls

∂γ
= 2(∆1 ⊙ Ẑ)1n,

∂Ls

∂β
= 2∆11n. (A.11)

For the normalized activations Ẑ, we have:
∂Ls

∂Ẑ
= 2γ ⊙∆1 = ∆2, (A.12)

where we define ∆2 for notational convenience. For each column i, the gradient of the normalized activations with respect
to the pre-normalized activations is:

∂Ẑi

∂Zi
=

1

σi
(I− 1

n
1c1

⊤
c − 1

n
ẐiẐ

⊤
i ), (A.13)



where I is the identity matrix. The complete gradient with respect to Z is:

∂Ls

∂Z =
(
∆2 − 1

n1c1
⊤
c ∆2 − 1

n Ẑ⊙ (1c1
⊤
c (Ẑ⊙∆2))

)
⊘ (1cσ), (A.14)

Let ∆3 = ∂Ls

∂Z , the gradients with respect to W and b are:

∂Ls

∂W
= ∆3(Q1V

t)⊤,
∂Ls

∂b
= ∆31n. (A.15)

A.2. Derivation of Sampling Function Jacobian

Given the trilinear interpolation sampling function:

Sample
(
Ht−1

m ; Rt→t−1(P+Mt)
)
, (A.16)

we aim to compute its Jacobian matrix J with respect to the sampling coordinates. For a coordinate p̂ = (x, y, z)⊤ in
Rt→t−1(P+Mt), the sampling function is defined as:

Sample
(
Ht−1

m ; p̂
)
= w(p̂)⊤Hm[p̂], (A.17)

where w(p̂) ∈ R8×1 is the weight vector derived using trilinear interpolation basis functions. Hm[p̂] represents the feature
matrix at the eight corner points surrounding p̂:

Hm[p̂] =



Ht−1
m (i0, j0, k0)

⊤

Ht−1
m (i0 + 1, j0, k0)

⊤

Ht−1
m (i0, j0 + 1, k0)

⊤

Ht−1
m (i0 + 1, j0 + 1, k0)

⊤

Ht−1
m (i0, j0, k0 + 1)⊤

Ht−1
m (i0 + 1, j0, k0 + 1)⊤

Ht−1
m (i0, j0 + 1, k0 + 1)⊤

Ht−1
m (i0 + 1, j0 + 1, k0 + 1)⊤


, (A.18)

where i0 = ⌊x⌋, j0 = ⌊y⌋, and k0 = ⌊z⌋. We define the fractional parts as dx = x− i0, dy = y − j0, and dz = z − k0. The
linear basis functions and their derivatives are:

ϕ0(e) = 1− e, ϕ1(e) = e, (A.19)
ϕ′
0(e) = −1, ϕ′

1(e) = 1. (A.20)

For each coordinate direction:

ϕx =

[
ϕ0(dx)
ϕ1(dx)

]
, ϕ′

x =

[
ϕ′
0(dx)

ϕ′
1(dx)

]
, (A.21)

ϕy =

[
ϕ0(dy)
ϕ1(dy)

]
, ϕ′

y =

[
ϕ′
0(dy)

ϕ′
1(dy)

]
, (A.22)

ϕz =

[
ϕ0(dz)
ϕ1(dz)

]
, ϕ′

z =

[
ϕ′
0(dz)

ϕ′
1(dz)

]
. (A.23)

The weight vector w(p̂) is then constructed using the Kronecker product ⊗:

w(p̂) = ϕx ⊗ ϕy ⊗ ϕz. (A.24)

The gradient of the weight vector is:

∇p̂w(p̂) =
[
ϕ′
x ⊗ ϕy ⊗ ϕz, ϕx ⊗ ϕ′

y ⊗ ϕz ϕx ⊗ ϕy ⊗ ϕ′
z

]
, (A.25)

where each column corresponds to the partial derivative with respect to x, y, and z, respectively. The Jacobian matrix J at
position p̂ of the sampling function with respect to p̂ is computed as:

J[p̂] = ∇p̂Sample
(
Ht−1

m ; p̂
)
= (∇p̂w(p̂))

⊤
Hm[p̂]. (A.26)
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BEVFormer [6] 39.2 37.2 - 5.0 44.9 26.2 59.7 55.1 27.9 29.1 34.3 29.6 29.1 50.5 44.4 22.4 21.5 19.5 39.3 31.1
OSP [15] 41.2 37.0 - 11.0 49.0 27.7 50.2 56.0 23.0 31.0 30.9 30.3 35.6 41.2 82.1 42.6 51.9 55.1 44.8 38.2
UniOCC [11] 39.7 - - - - - - - - - - - - - - - - - - -
SurroundSDF [9] 42.4 36.2 - 13.9 49.7 27.8 44.6 53.0 30.0 29.0 28.3 31.1 35.8 41.2 83.6 44.6 55.3 58.9 49.6 43.8
FlashOCC [18] 32.0 24.7 65.3 6.2 39.6 11.3 36.3 44.0 16.3 14.7 16.9 15.8 28.6 30.9 78.2 37.5 47.4 51.4 36.8 31.4
COTR [10] 44.5 38.6 75.0 13.3 52.1 32.0 46.0 55.6 32.6 32.8 30.4 34.1 37.7 41.8 84.5 46.2 57.6 60.7 52.0 46.3
ViewFormer [5] 41.9 35.0 70.2 12.9 50.1 28.0 44.6 52.9 22.4 29.6 28.0 29.3 35.2 39.4 84.7 49.4 57.4 59.7 47.4 40.6
OPUS [17] 36.2 33.3 54.0 11.9 43.5 25.5 41.0 47.2 23.9 25.9 21.3 29.1 30.1 35.3 73.1 41.1 47.0 45.7 37.4 35.3

BEVDetOcc-SF [4, 13] 41.9 34.4 75.1 12.1 50.0 22.1 43.9 53.9 29.1 23.8 25.8 28.5 34.9 41.8 84.3 44.4 57.5 61.0 53.1 46.7
BEVDetOcc-GF 43.6 36.0 77.8 12.6 51.5 24.0 46.2 55.8 26.8 26.3 27.3 30.8 37.6 43.4 84.7 46.8 58.4 62.1 56.9 50.7

FB-Occ [7] 39.8 34.2 69.9 13.8 44.5 27.1 46.2 49.7 24.6 27.4 28.5 28.2 33.7 36.5 81.7 44.1 52.6 56.9 42.6 38.1
FB-Occ-GF 41.7 35.8 73.2 14.1 47.6 27.5 46.8 52.0 26.8 28.1 29.8 31.5 36.1 39.3 82.5 46.2 54.2 58.5 46.3 42.3

ALOcc 45.5 39.3 75.3 15.3 52.5 30.8 47.2 55.9 32.7 33.3 32.4 36.2 38.9 43.7 84.9 48.5 58.8 61.9 53.5 47.3
ALOcc-GF 46.5 40.2 77.4 15.7 53.1 32.6 48.5 57.7 30.6 34.1 33.6 38.8 38.8 45.2 84.8 49.1 58.7 62.4 55.8 49.9

Table A.1. Detailed per-class 3D semantic occupancy prediction results. GDFusion consistently improves IoU for each class.

Method Backbone Input Size RayIoU RayIoU1m, 2m, 4m

RenderOcc [12] Swin-Base 512×1408 19.5 13.4 19.6 25.5
SparseOcc [8] ResNet-50 256×704 36.1 30.2 36.8 41.2
Panoptic-FlashOcc [19] ResNet-50 256×704 38.5 32.8 39.3 43.4
OPUS [17] ResNet-50 256×704 41.2 34.7 42.1 46.7

BEVDetOcc-SF [4, 13] ResNet-50 256×704 35.2 31.2 35.9 38.4
BEVDetOcc-GF ResNet-50 256×704 36.6 ↑1.4 32.6 ↑1.4 37.3 ↑1.4 39.9 ↑1.5

FB-Occ [7] ResNet-50 256×704 39.0 33.0 40.0 44.0
FB-Occ-GF ResNet-50 256×704 40.6 ↑1.6 35.0 ↑2.0 41.5 ↑1.5 45.3 ↑1.3

ALOcc [2] ResNet-50 256×704 43.7 37.8 44.7 48.8
ALOcc-GF ResNet-50 256×704 44.1 ↑0.4 38.2 ↑0.4 45.0 ↑0.3 49.2 ↑0.4

Table A.2. Evaluation of 3D semantic occupancy prediction on the Occ3D dataset without using the camera-visible mask, assessed
using RayIoU metrics. Relative improvements are highlighted with red arrows ↑. The integration of GDFusion demonstrates consistent
and substantial performance enhancements across the baseline methods.

B. Additional Resutls
B.1. Detailed Per-Class Semantic Occupancy Prediction

As shown in Tab. A.1, we present the IoU for all categories. GDFusion consistently improves the performance of the three
baselines across most categories, demonstrating the broad applicability of our approach. In particular, our method achieves
significant improvements in background categories such as vegetation and manmade, while also providing considerable gains
for dynamic object categories like car and pedestrian.

B.2. Performance Evaluation with RayIoU

Recently, Liu et al. [8] proposed the use of RayIoU to evaluate semantic occupancy prediction, providing an alternative
perspective on the evaluation system in Occ3D [16]. The experiments in Tab. A.2 showcase the significant impact of GDFu-
sion on advancing 3D semantic occupancy prediction under training conditions without a camera-visible mask. The results
in Tab. A.2 clearly demonstrate the effectiveness of integrating GDFusion, which consistently improves the performance of
baseline models across RayIoU metrics, as indicated by the red arrows marking relative improvements. These findings under-
score the effectiveness of GDFusion in leveraging valuable information embedded within temporal cues, thereby enhancing
both the geometric coherence and semantic precision of reconstructed scenes. As a result, GDFusion enables more reliable
and accurate occupancy predictions.



Method mIoU mIoUD IoU

Baseline 38.0 31.0 71.1
Our Vox his 41.8 34.0 76.5
RWKV 38.2 31.3 72.2
RWKV + Our Scene, Motion, Geometry His 41.9 35.0 76.1
xLSTM 39.9 32.7 74.4
xLSTM + Our Scene, Motion, Geometry His 40.9 33.6 76.1
Mamba 41.2 33.9 75.0
Mamba + Our Scene, Motion, Geometry His 42.4 34.6 76.8

RWKV + Our Vox his 41.7 33.5 76.5
RWKV + Our All His 43.3 35.8 77.8
xLSTM + Our Vox his 42.2 34.7 76.4
xLSTM + Our All his 43.3 35.7 77.5
Mamba + Our Vox his 41.9 34.4 76.4
Mamba + Our All his 43.1 35.2 77.8
Our Full 43.3 35.3 77.8

Table A.3. Extension study on integrating modern RNN methods with our method.

Position mIoU mIoUD IoU

Before Depth Net 42.1 34.6 76.6
Before Voxel-level His Fusion 42.4 34.8 76.8
After Voxel-level His Fusion 42.5 34.8 77.0
After Volume Encoder 42.1 34.5 76.6
After Voxel-level His Fusion + Before Voxel-level His Fusion 42.4 34.6 77.2
After Voxel-level His Fusion + After Volume Encoder 42.4 34.7 77.1
All 42.0 34.2 76.9

Table A.4. Ablation study w.r.t. the position of scene-level history fusion in the framework.

B.3. Results on Modern RNNs

Our voxel-level history fusion module can be directly replaced with modern RNN methods such as RWKV [14], xLSTM [1],
and Mamba [3]. In Tab. A.3, we evaluate the performance of combining these modern RNN methods with our approach. For
RWKV, xLSTM, and Mamba, we used a single-layer model for each respective structure. From the table, we draw several
conclusions: First, a standalone modern RNN method cannot outperform our voxel-level history fusion module. Second,
combining our proposed auxiliary temporal modules with a modern RNN method yields significant improvements. Third,
while integrating modern RNN methods with our voxel-level fusion approach and other temporal fusion modules does result
in improvements, it does not outperform the configuration without modern RNNs (i.e., Our Full). We hypothesize that
modern RNNs, which are designed for long-sequence context understanding in tasks like natural language processing, do
not exhibit clear advantages in the short sequences of the nuScenes dataset when used solely for temporal fusion. Utilizing
modern RNNs to integrate both spatial and temporal dimensions could be explored as a direction for future research.

B.4. Experiments on the Position of Scene-Level History Fusion in the Framework

In Tab. A.4, we investigate the impact of the position of scene-level history fusion on network performance. The baseline
model employs voxel-level history fusion. Specifically, we consider several positions within the vision-based semantic
occupancy network architecture: before the depth network, before voxel-level history fusion, after voxel-level history fusion,
and after the volume encoder, as well as multiple positions for scene-level fusion. The results in the table indicate that
scene-level fusion before the depth network or after the volume encoder performs worse compared to fusion before or after
voxel-level history fusion. The poor performance of fusion before the depth network is attributed to the fusion occurring in
the 2D modality, where the difference in data structure limits its effectiveness compared to direct fusion in the 3D modality.
The inferior performance of fusion after the volume encoder is primarily because scene-level history fusion acts similarly to
domain adaptation, which is beneficial for generating domain-independent features, favoring subsequent network encoding.



ηm 0.001 0.01 0.1

mIoU 42.5 42.5 42.4
mIoUD 32.4 32.4 32.4
IoU 76.6 76.5 76.4

Table A.5. Parameter study on ηm.

Method ηs mIoU mIoUD IoU

Scene His

0.1 42.5 34.8 77.0
1.0 42.4 34.2 77.3
10 42.3 34.1 77.5

100 42.1 34.3 77.2

w/o Gradient on γ, β

0.1 42.3 34.4 77.1
1.0 42.4 34.5 76.9
10 42.5 34.9 77.0

100 42.1 34.3 76.6

Linear → MLP
0.01 42.5 35.1 76.9
0.1 42.4 34.9 77.0

Table A.6. Ablation study w.r.t. the structure of the scene-level history fusion module. The first row indicates the selected structure
for scene-level history fusion. The second row shows the case where only linear layer parameters W and b are updated during scene-level
history fusion. The third row represents extending the linear layer to an MLP by adding additional parameters.

Therefore, fusion before the volume encoder, which is a densely encoding module, proves to be more advantageous. We also
experimented with multiple positions for scene-level fusion, but the results showed no significant advantage over a single
fusion position. Consequently, we only perform fusion after the voxel-level history fusion module in the final method.

B.5. Module Structure and Impact of Parameters ηs and ηm

In Tab. A.6, we explore different structural choices for scene-level history fusion. The baseline model utilizes voxel-level
temporal fusion. Jointly applying history fusion to both linear and LayerNorm parameters improves IoU to some extent,
likely due to the influence of LN parameters on background categories, which occupy a large proportion of the scene. In the
third row, we replace the linear layer with an MLP, which means using more parameters to store historical scene information.
However, experimental results indicate no significant gains, so we ultimately use only the linear and LN layers to store scene
information.

In Tab. A.6 and Tab. A.5, we evaluate the impact of the learning rate parameters ηs and ηm in scene-level temporal fusion
and temporal motion fusion on model performance. The results demonstrate that our method is relatively insensitive to these
hyperparameters.

B.6. Qualitative Analysis
Fig. A.1 presents the qualitative results of our method. Notably, none of the three baselines was able to predict the presence
of the car in the image, and even the ground truth lacks annotations for this car. However, after incorporating GDFusion, all
three approaches successfully detected the car, demonstrating the robustness and generalizability of our approach, even in
scenarios where the ground truth is incomplete.
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