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Supplementary Material

S1. Additional details of the SQ-Former
To effectively encode diverse visual information, we pro-
pose the SQ-Former architecture, which implements se-
quential feature collection and alignment through percep-
tion queries. As shown in Figure 3 in the main paper, SQ-
Former introduces collector queries as visual information
carriers, which sequentially accumulate information from
global image features, 3D object detection, and lane detec-
tion queries through attention mechanisms.

For multi-view image features, collector queries inter-
act with them through 6 transformer layers, with each
layer comprising a self-attention and a cross-attention op-
eration. This interaction enables the collector queries to
extract background contextual information, including envi-
ronmental conditions, time of day, etc., that not presented
in detection or lane queries. Following the acquisition of
scene-level information, the collector queries are concate-
nated with detection queries and processed through the de-
tection decoder to extract foreground object information, as
shown in Figure 2. Following StreamPETR [3], the detec-
tion decoder employs two types of queries: initial queries,
which are learned from current frame data to detect newly
appearing objects, and temporal queries, which are propa-
gated from last frames to maintain object tracking continu-
ity. In the concatenation of collector queries with tempo-
ral and initial queries, we implement an asymmetric atten-
tion mask, which enables unidirectional information flow
from detection queries to collector queries while prevents
the flow in the opposite direction. The asymmetric design
ensures that the collector query can effectively obtain infor-
mation from the detection query without affecting the per-
formance of the detector.

Through temporal attention, collectors can acquire his-
torical motion information from temporal queries and ini-
tial queries can identify previously tracked objects to fo-
cus on new detections in the current frame. The subsequent
cross attention operation allows temporal queries to verify
the persistence of tracked objects, while initial queries iden-
tify new object instances. Through multiple iterations of
this process, collector queries develop a comprehensive un-
derstanding of foreground objects within the current scene.
Meanwhile, the temporal query and the initial query can de-
tect the tracked objects and the newly appeared objects well,
and then the topK operation selects these queries by confi-
dence and places them into the memory queue.

The architecture of lane decoder is similar to that of de-
tection decoder, except that the temporal query is not used,
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Figure 1. Detail design of the End-to-end (E2E) planner of
SOLVE. Ego status includes the speed, acceleration, and angu-
lar velocity of the ego car in current scene. Vision Embeds are the
shared collector queries.

as shown in Figure 2. After interacting with the lane query,
the collector query can understand the road structure of the
current scene, which is useful for trajectory planning.

For hyper-parameter settings, we use 6 transformer lay-
ers (including temporal attention and cross attention), 900
initial queries, 300 temporal queries (equal to the selection
number of topk operation), and the length of the memory
bank is two frames (600 queries) for the detection decoder.
For the lane decoder, we also use 6 transformer layers, 300
initial queries, and the length of the memory bank is two
frames (600 queries). The number of collector queries is
384 and all queries with the channel number of 256.

S2. Additional details of the End-to-end plan-
ner

As shown in the Figure 1, we propose an efficient end-to-
end planning architecture that employs a discrete set of 18
predefined trajectories, categorized into three motion prim-
itives: forward, left-turn, and right-turn, with six variants
per category. In practice, we use the kmeans algorithm to
cluster trajectories of the training dataset to obtain these
18 predefined trajectories. The trajectory endpoints are
encoded via MLP into position embeddings to form plan-
ning queries. These planning queries interact with collec-
tor queries (vision embedding) extracted from SQ-Former
through two cross-attention layers. Finally, the classifica-
tion head and regression head based on MLP are used to
obtain the classification score and predicted trajectory of
the planning query added with the ego embedding , respec-
tively. We select the trajectory with the highest score as the
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Figure 2. Illustration of the temporal detection and lane decoder in our proposed SQ-Former. Note that temporal queries are only used
in the detection decoder, where each temporal query represents a tracked object. For each frame, the collector query obtains information
about foreground objects and road structures in the scene by interacting with the initial query and propagated temporal query (only for
detection) at the current moment. At the same time, the collector query can obtain long-term temporal context information by interacting
with the historical queries in the memory bank.

Planner Method L2 (cm) FPS

E2E

UniAD∗ [1] (Res101) 103.0 1.8
VAD [2] (Res50) 37.0 5.6
SOLVE-E2E (Res50) 31.3 9.1
SOLVE-E2E (EVA-L) 31.0 2.0

VLM
Omnidrive [4] (EVA-L) 33.0 0.3
SOLVE-VLM (Res50) 29.9 0.3
SOLVE-VLM (EVA-L) 28.4 0.3

Table 1. Comparison of different method’s inference time and the
adopted image backbone is indicated in brackets. All methods are
evaluated on NVIDIA A100 GPU. ∗ means ego status are not used
in trajectory planning.

final planning result. All queries with 256 channel.

S3. Additional details of the training losses

The training loss of SOLVE mainly consists of three parts,
Lsqformer, Lvlm, Le2e. Specifically, Lsqformer, which is
used to supervise object detection and lane detection for
the corresponding query in SQ-Former, includes Ldet and
Llane. For Lvlm, we use cross entropy loss to supervise
the next token prediction of auto-regression and we adopt
a loss weight that sets number (0∼9) and signs ± to 5 for
more accurate digital prediction in trajectory planning. For
Le2e, following SparseDrive, we use cross entropy as clas-
sification loss and L2 loss as regression loss. Finally, the
total loss L is expressed as:

L = Lsqformer + Lvlm + Le2e. (1)

S4. Additional analysis of inference time
Table 1 presents a comparison of performance and inference
speed between end-to-end planners and VLM-based plan-
ners. The results indicate that VLM-based planners achieve
superior performance, while End-to-end planners exhibit
notable advantages in computational efficiency. Specif-
ically, for the end-to-end planner, SOLVE-E2E (Res50)
achieves the best efficiency and outperforms VAD by 5.7 in
terms of L2 (cm). On the other hand, SOLVE-E2E (EVA-L)
achieves the best performance with a more computationally
expensive backbone. For the VLM planner, both with the
res50-based lightweight image backbone and the EVA-L-
based large backbone, SOLVE-VLM achieves higher per-
formance than Omnidrive and E2E models.
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