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Model & Method # Trainable
Parameters

SST-2
(Acc.)

MRPC
(Acc.)

CoLA
(MCC)

QNLI
(Acc.)

RTE
(Acc.)

STS-B
(PCC) Avg.

RoBbase(FF) 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
RoBbase(BitFit) 0.1M 93.7 92.7 62 91.8 81.5 90.8 85.4
RoBbase(AdptD) 0.3M 94.2±0.1 88.5±1.1 60.8±0.4 93.1±0.1 71.5±2.7 89.7±0.3 83.0
RoBbase(AdptD) 0.9M 94.7±0.3 88.4±0.1 62.6±0.9 93.0±0.2 75.9±2.2 90.3±0.1 84.2
RoBbase(LoRA) 0.3M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 78.4±0.8 91.5±0.2 85.2
RoBbase(AdaLoRA) 0.3M 94.5±0.2 88.7±0.5 62.0±0.6 93.1±0.2 81.0±0.6 90.5±0.2 85.0
RoBbase(DyLoRA) 0.3M 94.3±0.5 89.5±0.5 61.1±0.3 92.2±0.5 78.7±0.7 91.1±0.6 84.5
RoBbase(OURS) 0.4M 95.8±0.3 90.2±0.3 66.5±0.5 92.9±0.1 82.3±0.5 91.2±0.2 86.4

RoBlarge(FF) 356M 96.4 90.9 68.0 94.7 86.6 92.4 88.2
RoBlarge(AdptP) 3M 96.1±0.3 90.2±0.7 68.3±1.0 94.8±0.2 83.8±2.9 92.1±0.7 87.6
RoBlarge(AdptP) 0.8M 96.6±0.2 89.7±1.2 67.8±2.5 94.8±0.3 80.1±2.9 91.9±0.4 86.8
RoBlarge(AdptH) 6M 96.2±0.3 88.7±2.9 66.5±4.4 94.7±0.2 83.4±1.1 91.0±1.7 86.8
RoBlarge(AdptH) 0.8M 96.3±0.5 87.7±1.7 66.3±2.0 94.7±0.2 72.9±2.9 91.5±0.5 84.9
RoBlarge(LoRA) 0.8M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8
RoBlarge(OURS) 0.8M 95.5±0.2 90.9±0.3 68.5±0.5 94.7±0.4 88.4±1.6 92.4±0.4 88.4

Table 1. Performance on GLUE benchmark with RoBERTa Base
and RoBERTa Large models. Best results are highlighted in bold.

1. More Experiment Results
1.1. Natural Language Understanding

We evaluate our method on the GLUE benchmark (Gen-
eral Language Understanding Evaluation), which consists
of six datasets and can be grouped into three types: single-
sentence classification tasks, similarity and paraphrase tasks
and natural language inference tasks. Both RoBERTa Base
and RoBERTa Large fine-tuned as backbone.

The results are reported in Table 1. We report the me-
dian of 5 random seed results, where the best epoch is se-
lected for each run. We can see that, 1) our method obtains
around 1% ∼ 3% accuracy improvement of the mean ac-
curacy compared with baseline methods with the similar or
less trainable parameters on RoBERTa Base. 2) our method
obtains around 0.2% ∼ 3% accuracy improvement of the
mean accuracy compared with baseline methods with the
same or less trainable parameters on RoBERTa Large. 3)
Notably, our method outperforms all baselines on RoBERTa
Base of CoLA, SST-2 and RTE. And our method outper-
forms all baselines on RoBERTa Large of CoLA and RTE.

1.2. Storage Burden On GLUE Benchmark

In Table 2, To further demonstrate the computational cost
advantage of our CDRA-SPTWe provide training time and
GPU memory metrics with the RoBERTa Base on the
GLUE benchmark where we select LORA, and SPT as our
comparison baselines. From the results, we observe that

both LORA and SPT take more training time and higher
GPU memory, which is because only fine-tuning submatrix
of CDRA-SPT introduces less parameters.

Table 2. Anaysis of computational cost on GLUE.
Method Training time (hour) Fine-tuning Memory (GB)
LoRA 9.41 5.77

SPT-LoRA 9.63 5.79
Ours 9.17 4.70

1.3. The way of updating sensitive parameters

In Table 3, we compare our method with mask-tuning and
full fine-tuning on sub-parameter matrix. From results, we
find that our method obtains around 2.7% and 3.8% accu-
racy improvement of the mean accuracy. Because correla-
tion between sensitive row and column vectors can be fully
characterized by CDRA-SPT.

Table 3. Different ways of updating compact matrix on VTAB.
Method Full-finetuning Mask-tuning Ours

MeanAcc. 73.0 74.1 76.8

1.4. The rank of compact sub-parameter matrix

We report the performance in increased ranks case in Ta-
ble 4. The result shows that the compact sub-parameter ma-
trix is more likely low rank matrix. A similar experiment
conducted by previous work [1].

Table 4. Analysis of different rank adaptation on VTAB.
Rank 32 64 128 Full

MeanAcc. 75.4 75.4 75.0 74.2

1.5. Experiment on different sub-matrix sizes

In Table 5, we provide experiment on different sub-matrix
sizes. From results, we can find that the performance is de-
creasing when the size of sub-matrix sizes is smaller. This
experiment further prove the advantage of our method.

Table 5. Different sub-parameter matrix’s size on VTAB.
Size Ours(×1.0) ×0.5 ×0.3 ×0.1 ×0.01

MeanAcc. 76.8 74.6 74.1 73.8 73.5

2. Baselines Description
Full Fine-tuning (FF): During fine-tuning, updating all
the parameters on the base model which is initialized with
pre-trained weights and biases.

1



Bitfit: Only updating the bias vectors during fine-tuning.
Adapter: AdapterH firstly adds trainable modules be-
tween the self-attention and the FNN modules, which
consist of two-layers followed by a subsequent residual
connection. Unlike the AdapterH, AdapterP inserts the
adapter layers after the feed-forward layer. Motivated by
some adapter layers that are not activated, AdapterD drop
them and utilize the actual efficient parameters.
LoRA: Introduce two low-rank matrices to update incre-
mental weight, which can be merged into original matrix.
DyLoRA:[2] For finding the best rank choice, this method
trains a dynamic search-free LoRA models.
AdaLoRA:[3] Proposing dynamic rank adaption based on
the singular value decomposition and use importance-aware
rank allocation to prune redundant singular values.
Partialft-k: Only updating last k layers and the linear
classification head while other parameters are freezing.
Mlp-k: Updating a trainable k-layer multi-layer perceptron
as classification head while other parameters are freezing.
ShallowPrompt: Only introduce trainable prompts to the
input space of the pretrained ViT.
DeepPrompt: Introduce additional trainable prompts to
the sequence in the MHA of each ViT block.
Gradient Based Selection(GPS): Selecting top-k parame-
ters of neuron based on gradient before mask tuning.
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