
SoftVQ-VAE: Efficient 1-Dimensional Continuous Tokenizer

Supplementary Material

A. Posterior of KL-VAE and VQ-VAE

In this section, we provide the detailed derivation of the KL-
divergence of KL-VAE and VQ-VAE used in Eq. (1) and
Eq. (2), respectively.
KL-VAE has the KL divergence of the posterior with a
Gaussian prior:

Lkl (qφ(z)‖p(z)) .

=

∫
qφ(z) (log qφ(z)− log p(z)) dz

=
1

2

D∑
j=1

(
1 + log

(
(σj)

2
)
− (µj)

2 − (σj)
2
)
,

(8)

where D is the latent space dimension.
VQ-VAE assumes a uniform prior over the total K code-
words in the learnable codebook for the deterministic poste-
rior, thus present a KL divergence as follows:

Lkl (qφ(z)‖p(z)) .

=

∫
qφ(z) (log qφ(z)− log p(z)) dz

= −(− logK)

= logK

(9)

A.1. Comparison to VQ
We list the advantages of SoftVQ in Tab. 5 with empirical
support, and will add in the revision.

Table 5. Advantages of SoftVQ over VQ.
Advantages VQ SoftVQ Empirical Support

Grad. Broken yes no No straight-through trick. SoftVQ-S-64 has a 1.41 rFID and 13.35 gFID.

Codebook Loss yes no
Not necessary. Adding codebook loss in SoftVQ-S-64
results in an 1.34 rFID of of but a worse gFID of 15.15.

Commit Loss yes no
Not necessary. Adding commit loss in SoftVQ-S-64
results in an rFID of 1.33 of but a worse gFID of 14.35.

Comp. Ratio low high SoftVQ has much lower rFID<1.0 comapred to TiTok in Tab. 1.
Rep. Align. difficult easy More discriminative features in main Fig. 4

While representation alignment can also applied to VQ,
it fails to learn discriminative features with high compres-
sion ratio, mainly due to its broken gradient. Compared
to SoftVQ, whose encoder and codebook’s parameters are
directly learned by the alignment loss, the gradient of align-
ment loss on VQ will first be straight-through from decoder
input to encoder output, and then the codebook is updated
according to the codebook loss, resulting in indirect learning
of discriminative features.

We provide an additional codewords visualization in
Fig. 5, where SoftVQ learns code embeddings uniformly
across the entire distribution.

B. Additional Details of SoftVQ-VAE and its
Variants

In this section, we present more details on the posterior
of SoftVQ-VAE, its variant GMMVQ-VAE with the latent
space as a GMM model, and the compatibility of SoftVQ-
VAE with improvement techniques of VQVAE.

B.1. Posterior of SoftVQ-VAE
In SoftVQ, we similarly assume that the prior is a uniform
distribution over theK learnable codewords as in VQ, except
for we have the posterior as the softmax probability:

Lkl (qφ(z)‖p(z)) .

=

∫
qφ(z) (log qφ(z)− log p(z)) dz

= H(qφ(z))−H(qφ(z), p(z)),

(10)

where H(qφ(z) is the entropy for H(qφ(z), p(z)) is the
cross-entropy between qφ(z) and the uniform prior p(z) ∼
U(0,K). In practice, H(Ex∼p(x)[qφ(z)], p(z)) we compute
the Ex∼p(x)[qφ(z)] instead, where Ex∼p(x)[qφ(z)] is com-
puted on the averaged batch data during training.

B.2. GMMVQ-VAE
As discussed in the main paper, the latent space of SoftVQ
can be interpreted as soft K-Means, and it can be further
extended to a latent space of Gaussian Mixture Model. We
present more details of this extension here.

In GMMVQ-VAE, the encoder predicts two things: the
embedding ẑ and the weights of the Gaussian component
ω(ẑ). We can then formulate the posterior as:

posterior: qφ(z|x) = Softmax (−ω(ẑ)‖ẑ− C‖2)
latent: z = qφ(z|x)C
kl: Lkl = H(qφ(z|x))−H

(
Ex∼p(x)qφ(z|x)

)
.

(11)

The difference between SoftVQ and GMMVQ in our for-
mulation is the way in computing the posterior, i.e., us-
ing fixed temperature parameter versus learning the data-
dependent temperature parameters by the encoder. Note that

VQ-S-64 SoftVQ-S-64

Codewords Entire Embedding Distribution

Figure 5. Codewords visualization



we still maintain the codebook and its codewords entries
directly for the decoder input. It is possible to make the
latent space formally a GMM, by treating the codewords
as Gaussian means, and formulating the decoder input with
the re-parametrization trick. However, we find that this for-
mulation with re-parametrization will hinder the learning
of the latent space. Thus, we adopted the simpler design to
use the codebook directly for reconstruction, assuming fixed
variance in the Gaussian components of GMM.

B.3. Compatibility of SoftVQ-VAE
Since SoftVQ-VAE maintains the learnable codebook, previ-
ous techniques to improve VQ-VAE are also compatible with
it. Here, we follow ImageFolder [62] to show the combina-
tion of SoftVQ with product quantization [45] and residual
quantization [55], as illustrated in Fig. 6.
Product Quantization (PQ) [45] divides the latent codes
into G groups, with each group having its own codebook:

z = [z(1), z(2), ..., z(G)]

qφ(z
(g)|x) = Softmax(−‖ẑ(g) − C(g)‖2/τ).

(12)

PQ can effectively increase the actual codebook size.
Residual Quantization (RQ) [55] applies multiple layers
of quantization to the residual errors of the encoder output:

zl = zl−1 + SoftVQ(rl−1)

rl = rl−1 − zl

z0 = 0

r0 = ẑ

(13)

where r is the residual and l is the layer index. RQ captures
more fine-grained features and thus better reconstruction.

C. Additional Implementation Details
In this section, we provide more implementation details of
the tokenizer training, the downstream generative models
training, and the linear probing evaluation.

C.1. Implementation Details of SoftVQ-VAE
All tokenizer experiments (except the open-source ones) in
this paper are trained using the same training recipe. We train
the tokenizers on ImageNet [15] of resolution 256×256 and
512×512 for 250K iterations on 8 MI250 GPUs. Training for
longer may lead to further improvement of reconstruction
and potentially downstream generation performance [71,
108]. AdamW [68] optimizer is used with β1 = 0.9, β2 =
0.95, a weight decay of 1e-4, a maximum learning rate of
1e-4, and cosine annealing scheduler with a linear warmup
of 5K steps. We use a constant batch size of 256 is used
for all models. For the training objective, we set λ1 = 1.0,
λ1 = 0.2, λ3 = 0.1, and λ4 = 0.01, following previous
common practice. We additionally linearly warmup the loss

weight of perceptual loss, i.e., λ1 = 1.0, for 10K iterations,
which we find beneficial to train with fewer latent tokens.

Similarly to Tian et al. [99] and Li et al. [62], we found
that the discriminator is very important for training the tok-
enizer. Instead of using the common PatchGAN and Style-
GAN architecture, we adopted the frozen DINO-S [9, 79] dis-
criminator with a similar architecture to StyleGAN [48, 49],
as in [99]. In addition, we use DiffAug [121], consistency
regularization [119], and LeCAM regularization [101] for
discriminator training as in [99]. The loss weight of consis-
tency regularization is set to 4.0 and LeCAM regularization
is set to 0.001. We did not use the adaptive discriminator
loss weight since it is too tricky to tune.

C.2. Implementation Details of DiT, SiT, and MAR

DiT. The training recipe of our DiT models mainly follows
the original setup. Since we are using 1D latent tokens, we
set the patch size of DiT models to 1 and use 1D absolute
position encoding. We use a constant learning rate of 1e-4
and a global batch size of 256 to train the DiT models. We
use the cosine noise scheduler since it suits better for our
case, but very similar generation performance were obtained
in our early experiments with linear scheduler. To accel-
erate training, we additionally adopt mixed precision with
bfloat16 and flash-attention. DiT-L models are trained for
400K iterations. In our main paper, we report the results of
DiT-XL models for training 3M iterations. We report more
and better results for longer training, i.e., up to 4M iterations,
in Appendix D.2. For conditional generation with CFG, we
use 1.35 for DiT models trained on SoftVQ with 64 tokens
and 1.45 for DiT models trained on SoftVQ with 32 tokens.
These guidance scale values are obtained via grid search.
SiT. Similarly, we use the original setup to train the SiT
models, with a constant learning rate of 1e-4 and a global
batch size of 256. We also use cosine scheduler in training
of SiT models, as in our DiT models. The main results are
reported with training for 3M iterations, and we include the
training results for up to 4M iterations in Appendix D.2. For
conditional generation with CFG, we use 1.75 for SiT mod-
els trained on SoftVQ with 64 tokens and 2.25 for models
trained on SoftVQ with 32 tokens. Similarly to RPEA [116],
we set the guidance interval to [0, 0.7] for CFG results [53].
These guidance scale values are obtained via grid search.
MAR. The MAR-H are trained using the AdamW optimizer
for 500 epochs. The weight decay and momenta for AdamW
are 0.02 and (0.9, 0.95). We also use a batch size of 2048
as in the original setup. Li et al. [60] used a linearly scaled
learning rate of 8e-4. However, we found that this learn-
ing rate constantly causes the NaN problems in loss. Thus
we adopt a maximum learning rate of 2e-4. We also train
the models with a 100-epoch linear warmup of the learning
rate, followed by a constant schedule. We suspect that the
lower performance of our MAR models is caused by the



…
…

…𝐾 Codewords

Distance

Softmax

Mat. Mul

SoftVQ with 
Product Quantization

…

…
𝐺 Groups

𝐿
 Latent Codes

…

𝐺 Replication

…

𝐿
 Latent Codes

…

𝐾
 Codewords

Distance

Softmax

Mat. Mul

…

-

+

𝑟𝑙

𝑧𝑙
𝑙 Layers

SoftVQ with 
Residual Quantization

𝐺 Groups

Figure 6. Illustration of product quantization (left) and residual quantization (right) with SoftVQ.

lower learning rate, which effectively results in fewer train-
ing iterations. More investigation on improving the MAR
performance of SoftVQ is undergoing and will be updated
in our future iterations. We use a CFG of 3.0 for conditional
generation results.

We train all of our 256×256 generative models on 8
MI250 GPUs and 512×512 models on 8 MI300 GPUs.

C.3. Implementation Details of Linear Probing
We use the setup similar to that used in MAE [35], DAE
[14], and REPA [3] to perform the linear probing evaluation
in the latent tokenizer space and intermediate features of
trained SiT models. Specifically, we train a parameter-free
batch normalization layer and a linear layer for 90 epochs
with a batch size of 16,384. We use the Lamb optimizer
with cosine decay learning rate scheduler where the initial
learning rate is set to 0.003.

D. Additional Results
In this section, we present our ablation study on the SoftVQ-
VAE tokenizer, more results of the trained generative models
including results from longer training, and more visualiza-
tion of the reconstruction results from the tokenizer and the
generative models.

D.1. Ablation Study
The full ablation results are shown in Tab. 6.
SoftVQ variants. We compare our baseline SoftVQ-S with
several variants, including different quantization approaches.
Adding product quantization (PQ) with group size G=2 and
G=4 both improve the performance, reducing rFID from 1.33
to 1.19 and 1.03 respectively. Although residual quantization
(RQ) alone increases rFID to 1.55, combining it with product
quantization (R-PQ) yields better results with rFID of 1.17.

Table 6. Ablation study of SoftVQ-VAE
Variants

Tokenizer SoftVQ-S + PQ (G=2) + PQ (G=4) + RQ + R-PQ (G=4) GMMVQ-S

rFID 1.33 1.19 1.03 1.55 1.17 1.12
Codebook Size

K 512 1024 2048 4096 8192 16384

rFID 1.82 1.58 1.35 1.14 1.03 1.23
Latent Size

L/D 64/16 64/32 64/64 32/32 32/64 32/128

rFID 2.31 1.03 0.63 1.61 1.24 0.79
Softmax Temp.

τ 0.001 0.01 0.07 0.1 1.0 learnable

rFID 2.03 1.37 1.03 1.19 1.52 1.10

The GMMVQ-S variant also shows competitive performance
with an rFID of 1.12.
Codebook size. We investigate the impact of codebook size
K ranging from 512 to 16384. The results show that larger
codebooks generally lead to better performance, with rFID
decreasing from 1.82 (K=512) to 1.03 (K=8192). However,
further increasing K to 16384 slightly degrades performance
with an rFID of 1.23, suggesting that an overly large code-
book may harm model stability.
Latent size. The latent dimensions L/D significantly affect
the model performance. Starting from a small latent size of
64/16, increasing the dimensions initially helps, with 64/32
achieving the best rFID of 1.03. While further enlargement
leads to better reconstruction performance, as seen in the
64/64 configuration with an rFID of 0.63, we find that the
larger dimension of the latent space makes the generative
models more challenging to learn.
Softmax temperature. The softmax temperature τ controls
the sharpness of the posterior probability. We observe that
very low temperatures τ =0.001 result in poor performance,
while moderate values around 0.07 achieve optimal results.
Making τ learnable produces competitive performance, sug-
gesting that adaptive temperature could be a practical choice.



D.2. Main Results
We report the full results, including precision and recall, for
the ImageNet 256×256 benchmark in Tab. 7 and 512×512
benchmark in Tab. 8, respectively. All main results reported
are evaluated on SiT-XL and DiT-XL models trained for 3M
iterations, and MAR models trained for 500 epochs. Note-
worthy is that our models achieve performance comparable
to state-of-the-art systems. More importantly, on 512×512
generation, SoftVQ with 32 tokens provides a 100x speedup
on the inference throughput.

An interesting finding is that, even though our models
in general present the best conditional gFID without using
CFG, their performance improvement with CFG becomes
smaller, compared to SiT-XL/2 + REPA [116]. We leave the
investigation of the reasons behind this observation for our
future work.

We also provide results of longer training, i.e., 4M iter-
ations, and results along the training in Tab. 9. One can
observe that the performance of our models does not saturate
at 3M iterations of training, and longer training may provide
further performance improvement.

D.3. More Comparison to TiTok
We provide a comparison between TiTok and SoftVQ in
Tab. 10, including token numbers, model parameters, rFID
of IN-1K and MSCOCO, linear probing (LP) accuracy, gFID
and IS of SiT-L. We show that SoftVQ significantly outper-
forms TiTok with VQ and KL. Also, we need to note that
while the model architectures are similar, training is different.
TiTok is trained using 2-stage decoders with a pre-trained
tokenizer, whereas our method is trained end-to-end with
a single decoder. Also note that, although soft assignment
of codewords may not be a new idea, our work is indeed
the first to explore it with continuous tokenizer that achieves
high compression ratio.

D.4. Reconstruction Visualization
We present a visualization of the SoftVQ-L reconstruction
results with 32 and 64 tokens in Fig. 7 and Fig. 8, respec-
tively.

D.5. Generation Visualization
More visualizations of SiT-XL trained on SoftVQ-L with 32
and 64 tokens are shown here.



Table 7. System-level comparison on ImageNet 256×256 conditional generation. We compare with both diffusion-based models and
auto-regressive models with different types of tokenizers. Grey denotes SoftVQ. Our DiT/SiT results are reported with a total training
of 3M iterations (compared to 4M of SiT/XL-2 + REPA and 7M for SiT/XL2 and DiT-XL/2), and MAR results are reported with a total
training of 500 epochs with smaller learning rate (compared to 800 epochs of MAR-H). † indicates results with DPM-Solver and 50 steps.

Gen. Model Tok. Model # Tokens ↓ Tok. rFID ↓ Gflops ↓ Throughput
(imgs/sec) ↑

w/o CFG w/ CFG
gFID ↓ IS ↑ Prec. ↑ Recall ↑ gFID ↓ IS ↑ Prec. ↑ Recall ↑

Auto-regressive Models
Taming-Trans. [23] VQ 256 7.94 - - 5.20 290.3 - - - - - -
RQ-Trans. [55] RQ 256 3.20 908.91 7.85 3.80 323.7 - - - - - -
MaskGIT [10] VQ 256 2.28 - - 6.18 182.1 0.80 0.51 - - - -
MAGE [59] VQ 256 - - - 6.93 195.8 - - - - - -
LlamaGen-3B [98] VQ 256 2.08 781.56 2.90 - - - - 3.06 279.7 0.80 0.58
TiTok-S-128 [115] VQ 128 1.61 33.03 6.50 - - - - 1.97 281.8 - -
MAR-H [60] KL 256 1.22 145.08 0.12 2.35 227.8 0.79 0.62 1.55 303.7 0.81 0.62

SoftVQ-L 32 0.61 67.93 2.19 3.83 211.2 0.77 0.61 2.54 273.6 0.78 0.61MAR-H SoftVQ-BL 64 0.65 86.55 0.89 2.81 218.3 0.78 0.62 1.93 289.4 0.80 0.61

Diffusion-based Models
LDM-4 [88] KL 4096 0.27 157.92 0.37 10.56 103.5 0.71 0.62 3.60 247.7 0.87 0.48
U-ViT-H/2† [4]

KL 1024 0.62

128.89 0.98 - - - - 2.29 263.9 0.82 0.57
MDTv2-XL/2 [29] 125.43 0.59 5.06 155.6 0.72 0.66 1.58 314.7 0.79 0.65
DiT-XL/2 [80] 80.73 0.51 9.62 121.5 0.67 0.67 2.27 278.2 0.83 0.53
SiT-XL/2 [72] 81.92 0.54 8.30 131.7 0.68 0.67 2.06 270.3 0.82 0.59
+ REPA [116] 5.90 157.8 0.70 0.69 1.42 305.7 0.80 0.65

SoftVQ-B 0.89 8.94 9.83 113.8 0.70 0.61 3.91 264.2 0.81 0.54
SoftVQ-BL 0.68 8.81 9.22 115.8 0.71 0.61 3.78 266.7 0.82 0.54DiT-XL
SoftVQ-L

32
0.74

14.52
8.74 9.07 117.2 0.71 0.61 3.69 270.4 0.83 0.53

SoftVQ-B 0.88 4.70 6.62 129.2 0.75 0.62 3.29 262.5 0.84 0.54
SoftVQ-BL 0.65 4.59 6.53 131.9 0.75 0.62 3.11 268.3 0.84 0.56DiT-XL
SoftVQ-L

64
0.61

28.81
4.51 5.83 141.3 0.75 0.62 2.93 268.5 0.84 0.55

SoftVQ-B 0.89 10.28 7.99 129.3 0.70 0.63 2.51 301.3 0.76 0.62
SoftVQ-BL 0.68 10.12 7.67 133.9 0.70 0.63 2.44 308.8 0.76 0.63SiT-XL
SoftVQ-L

32
0.74

14.73
10.11 7.59 137.4 0.71 0.63 2.44 310.6 0.77 0.63

SoftVQ-B 0.88 5.51 5.98 138.0 0.74 0.64 1.78 279.0 0.80 0.63
SoftVQ-BL 0.65 5.42 5.80 143.5 0.74 0.64 1.88 287.9 0.80 0.63SiT-XL
SoftVQ-L

64
0.61

29.23
5.39 5.35 151.2 0.74 0.64 1.86 293.6 0.81 0.63

Table 8. System-level comparison on ImageNet 512×512 conditional generation. We compare with both diffusion-based models and
auto-regressive models with different types of tokenizers. Grey denotes SoftVQ. † indicates results with DPM-Solver and 50 steps.

Gen. Model Tok. Model # Tokens ↓ Tok. rFID ↓ Gflops ↓ Throughput
(imgs/sec) ↑

w/o CFG w/ CFG
gFID ↓ IS ↑ Prec. ↑ Recall ↑ gFID ↓ IS ↑ Prec. ↑ Recall ↑

Generative Adversarial Models
BigGAN [10] - - - - - - - - - 8.43 177.9 - -
StyleGAN-XL [48] - - - - - - - - - 2.41 267.7 - -

Auto-regressive Models
MaskGIT [10] VQ 1024 1.97 - - 7.32 156.0 - - - - -
TiTok-B [115] VQ 128 1.52 - - - - - - 2.13 261.2 - -

MAR-H SoftVQ-BL 64 0.71 86.55 1.50 8.21 152.9 0.69 0.59 3.42 261.8 0.77 0.61

Diffusion-based Models
ADM [16] - - - - - 23.24 58.06 - - 3.85 221.7 0.84 0.53
U-ViT-H/4† [4]

KL 4096 0.62
128.92 0.58 - - - - 4.05 263.8 0.84 0.48

DiT-XL/2 [80] 373.34 0.10 9.62 121.5 - - 3.04 240.8 0.84 0.54
SiT-XL/2 [72] 373.32 0.10 - - - - 2.62 252.2 0.84 0.57
DiT-XL [11] AE 256 0.22 80.75 1.02 9.56 - - - 2.84 - - -
UViT-H† [11] 128.90 6.14 9.83 - - - 2.53 - - -
UViT-H† [11] AE 64 0.22 32.99 15.23 12.26 - - - 2.66 - - -
UViT-2B† [11] 104.18 9.44 6.50 - - - 2.25 - - -

SoftVQ-L 32 0.64 14.73 10.12 10.17 119.2 0.65 0.59 4.23 218.0 0.83 0.52SiT-XL SoftVQ-BL 64 0.71 29.23 5.38 7.96 133.9 0.73 0.63 2.21 290.5 0.85 0.59



Table 9. Generation performance over training of DiT-XL and SiT-XL trained on SoftVQ-L with 32 and 64 tokens.

Model Training Iter. w/o CFG w/ CFG

FID IS Prec. Recall FID IS Prec. Recall

DiT/XL
SoftVQ-L 32

3M 9.07 117.2 0.71 0.61 3.69 270.4 0.83 0.53
4M 8.54 124.0 0.72 0.62 3.58 281.9 0.82 0.53

DiT/XL
SoftVQ-L 64

3M 5.83 141.3 0.75 0.62 2.93 268.5 0.84 0.55
4M 5.60 144.5 0.76 0.63 2.84 270.1 0.85 0.54

SiT/XL
SoftVQ-L 32

400K 16.49 79.1 0.65 0.61 4.61 281.2 0.86 0.47
1M 10.30 109.0 0.69 0.63 2.85 284.0 0.76 0.61
2M 8.52 122.8 0.71 0.64 2.51 296.3 0.77 0.63
3M 7.59 137.4 0.71 0.63 2.44 310.6 0.77 0.63
4M 7.32 138.6 0.72 0.63 2.38 311.5 0.77 0.63

SiT/XL
SoftVQ-L 64

400K 10.03 103.4 0.71 0.62 3.12 236.3 0.77 0.61
1M 7.14 125.4 0.72 0.64 2.09 254.9 0.79 0.62
2M 5.88 140.6 0.73 0.64 1.89 284.4 0.80 0.63
3M 5.35 151.2 0.74 0.64 1.86 293.6 0.81 0.63
4M 5.21 158.5 0.75 0.64 1.79 297.8 0.81 0.64

G
T

Re
co

n.

Figure 7. Reconstruction results of SoftVQ-L with 32 tokens.

G
T

Re
co

n.

Figure 8. Reconstruction results of SoftVQ-L with 64 tokens.



Figure 9. Uncurated 256×256 generation results of DiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = ”balloon” (417).

Figure 10. Uncurated 256×256 generation results of DiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “baseball”
(429).



Figure 11. Uncurated 256×256 generation results of DiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “dog sled”
(537).

Figure 12. Uncurated 256×256 generation results of DiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “space shuttle”
(812).



Figure 13. Uncurated 256×256 generation results of DiT-XL with SoftVQ-L 32 tokens. We use CFG with 4.0. Class label = “panda” (388).

Figure 14. Uncurated 256×256 generation results of DiT-XL with SoftVQ-L 32 tokens. We use CFG with 4.0. Class label = “geyser” (974).



Figure 15. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “golden
retriever” (207).

Figure 16. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “arctic wolf”
(270).



Figure 17. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “lion” (291).

Figure 18. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “loggerhead sea
turtle” (33).



Figure 19. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “fire truck”
(555).

Figure 20. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “laptop” (620).



Figure 21. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “macaw” (88).

Figure 22. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label =
“sulphur-crested cockatoo” (89).



Figure 23. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “ice cream”
(928).

Figure 24. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 4.0. Class label = “cheeseburger”
(933).



Figure 25. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 32 tokens. We use CFG with 4.0. Class label = “coral reef”
(973).

Figure 26. Uncurated 256×256 generation results of SiT-XL with SoftVQ-L 32 tokens. We use CFG with 4.0. Class label = “lake shore”
(975).



Figure 27. Uncurated 512×512 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 2.0. Class label = “cliff drop-off”
(972).



Figure 28. Uncurated 512×512 generation results of SiT-XL with SoftVQ-L 64 tokens. We use CFG with 2.0. Class label = “volcano” (980).



Table 10. Comparison between TiTok and SoftVQ.
Tokenizer # Param. rFID (IN-1K) rFID (COCO) LP (IN-1K) gFID IS

TiTok-B-64 176 1.70 11.20 39.2 25.12 53.1
TiTok-BL-KL-64 389 1.25 8.94 11.4 23.35 52.7
TiTok-BL-VQ-64 390 2.60 11.24 9.3 19.23 61.8
SoftVQ-B-64 173 0.89 5.16 42.3 10.13 103.4

TiTok-L-32 614 2.21 14.41 48.9 26.84 49.5
TiTok-LL-KL-32 614 1.61 10.45 12.3 24.65 51.97
SoftVQ-L-32 608 0.61 5.51 59.4 9.47 107.2


