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Supplementary Material

6. Demo Examples
Please see the attached videos in the supplementary
demo videos folder. We included videos from Matter-
port3D scene and our real-world scene (N2S). For the best ex-
perience, please turn on your audio and use headphones.

6.1. Real Scene: N2S Demo
This demo contain videos from a real-world scene. The scene
is captures using 11 reference microphones, their spatial
distribution is shown in Figure 6 (Ref Num = 11). Unlike
simulated scenes, the real scene presents challenges with
diverse natural sounds, including diffuse machine noise
and air conditioner vibrations, which are difficult to iden-
tify and localize in 3D. Using reference sounds as input for
the Novel-View Ambient Sound Synthesis task proves more
effective than attempting to localize and separate sources to
render with Room Impulse Responses (RIRs).

In the demo video (0 0 n2s soundvista.mp4) of
SoundVista, three dominant sound sources are clearly identi-
fiable: a TV playing water and bird sounds, a black speaker
in the corner playing music, and an air conditioner produc-
ing diffuse noise throughout the scene. The sound changes
noticeably when entering a small, noisy room with consid-
erable reverberation. As the listener continuously moves in
the scene, our model was able to reconstructs these sounds
without requiring source counting, localization and RIR data.

6.2. Soundspace-Ambient Matterport3D Demo
Videos prefixed with 1 x are results from Matterport3D
scenes. We show results from 10 different room that
are part of the Soundspace-Ambient benchmark. In
1 0 mp3d source explain.mp4, we outline the setup,
which include 17 reference points (green stars) and 5 sound
sources (blue triangles) distributed throughout the scene. The
sources produce various sounds, such as running shower wa-
ter, engine noise, fireplace crackling, a phone ring, and birds
chirping.

In the videos, the listener (target); shown as a red circle
navigates between rooms throughout the scene. The binaural
sound adapts naturally to both viewing orientation and source
distance. Though sound transitions remain mostly smooth,
crossing between rooms can create more sudden changes
because of physical barriers.

6.3. Comparison with Baselines
We compare our results with two baselines: DSP, a tradi-
tional signal processing approach that interpolates binaural
sounds from the four nearest reference points using target

orientation and distance, and ViGAS, a recently proposed
learning-based method. SoundVista produces better results
compared to the baseline methods. Specifically, SoundVista
smoothly adapts binaural effects to view orientations.

For example, in the N2S scene, when navigating the
TV region (video 0 1 n2s comparison tvclip.mp4)
and turning around, DSP and ViGAS fail to properly
track the TV sound as it moves from left to front to
right. Moreover, DSP’s simple interpolation of nearby
reference points proves inadequate for handling obsta-
cle effects, resulting in inaccurate sound magnitudes. Vi-
GAS introduces sound distortions, especially with bass-
heavy music and engine noise, and produces unexpected
abrupt changes in sound magnitude. SoundVista, in con-
trast, delivers consistently high-quality (undistored), smooth,
and continuous audio. Similar examples are also demon-
strated in comparison videos around N2S speaker (video
0 2 n2s comparison speakerclip.mp4) and in
the Soundspace-Ambient Matterport3D scene (video
1 1 mp3d comparison.mp4).

7. Implementation Details
This section details the implementation of each SoundVista
module.

7.1. Visual Acoustic Binding (VAB)
For training, we partition the panoramic image into four
RGB-D views, each of size 224→ 224→ 4, and use ResNet-
18 as the visual encoder to extract an embedding of dimen-
sion 256 for each view. These representations are concate-
nated as the VAB embedding g with a dimension of 1024.

7.2. Reference Location Sampler
To determine reference locations within a scene, we first

calculate the number of reference points needed by dividing
the walkable region’s range by a standard distance of 8 me-
ters. With this allocated budget, we then sample locations by
clustering all potential walkable reference points.

For each location, we extract the visual representation
g using the pretrained VAB visual encoder. We expand the
3-dimensional location to match the 1024-dimensional g
using sinusoidal encoding and concatenate these representa-
tions. We then use K-means clustering to group the candidate
locations based on the combined embeddings.

Due to the complexity of Matterport3D scenes with mul-
tiple floors, we cluster locations floor by floor. We group
walkable locations by height, rounding to the nearest meter.
After removing groups with fewer than three locations, we al-



locate the budget proportionally based on each group’s size.
This ensures at least one location per group, with groups
arranged from smallest to largest to maintain strict budget
control.

After combining all clustering results, we select the walk-
able location nearest to each floor group’s cluster center as
the sampled reference location.

7.3. Reference Integration Transformer

We deploy a three-layer cross-attention Transformer for ref-
erence integration, which features four heads and a dropout
ratio of 0.1. The model has a dimension C of 256 and a
feedforward hidden dimension of 512. We use a latent query
embedding e with a dimension of 128. This is concatenated
with the projected VAB embedding, which also has a size
of 128, to form the queries. The relative vector is encoded
using positional encoder with sine-cosine functions, utilizing
a frequency number of 10, and is projected to a vector with
a dimension of 128.

7.4. Reweighting

The dimensions of both the local and global conditions are
256. Specifically, for the local condition, we use sine-cosine
functions to embed the rotation quaternion, similar to the
approach used in positional encoding.

7.5. Spatial Audio Renderer

We utilize the Short-Time Fourier Transform (STFT) to con-
vert waveform audio into the time-frequency domain. The
FFT size, window length, and hop length are set to 510, 510,
and 128, respectively, and a Hanning window is applied. We
chunk the input waveform into segments of length 32641 to
form a spectrogram of size 256→ 256. The renderer consists
of a U-Net structure with six downsampling layers and six
upsampling layers. The conditions are multiplied to combine
with the audio content within the condition layers.

7.6. Loss and Training

To balance the loss values, we assign coefficient weights to
each of the three loss components: Waveform Loss, Binaural
Interaural Level Difference (ILD) Loss, and Multi-resolution
Spectrogram Magnitude Loss, with weights of 20, 0.025,
and 1.0, respectively. We employ the Adam optimizer for
optimization, using an exponentially decaying learning rate
starting from 1→ 10→4 over 60 epochs. The batch size is set
to 16 for the Soundspace-Ambient benchmark and 24 for
the N2S benchmark. Each batch consists of various training
samples from the same scene to optimize memory usage
when calculating reference VAB embeddings for reference
integration.

Method STFT ↑ MAG ↑ ENV ↑ LRE ↑
w/ VAB 2.442 0.289 0.130 1.390
w/o VAB 2.580 0.295 0.134 1.403

Table 5. Ablations for VAB in Reference Integration Transformer.

8. VAB for Reference Integration
In this section, we study the effectiveness of using VAB
embeddings for the Reference Integration Transformer. We
implement a variant that excludes the VAB embeddings from
the transformer (w/o VAB) to compare with SoundVista with
VAB in the transformer (w/ VAB). We report the ablations
results on the Soundspace-Ambient benchmark in Table 5
and visualize examples of the reference contribution weights
in Figure 7. Compared with w/o VAB, w/ VAB effectively
incorporates visual cues to make the contribution weights
more reasonable.

9. Extrapolation Performance Analysis
In our work, the reference microphones are sparsely placed
(over 5 meters apart), the edge regions of the rooms typically
fall outside the convex hull formed by these microphones.
Due to limited in-room data, we cannot track poses or GT
sound far beyond the room to evaluate the extrapolation
performance. In Figure 3, we show the loudness heatmaps for
two scenes; while the errors are larger in the edge regions, the
results remain reliable. Furthermore, Table 1 demonstrates
that using the top selected reference microphone achieves
accuracy comparable to using multiple microphones. These
findings show SoundVista’s ability to extend beyond simple
interpolation.

10. Acoustic Parameter Learning
We train the acoustic parameter (RT60) learning model on
walkable locations from 39 “seen scenes” of Matterport3D in
the Soundspace-Ambient benchmark. An MLP is employed
to predict the RT60 value from the VAB embedding g, using
L1 loss for supervision. For testing on unseen scenes, we
directly use the pretrained visual encoder without fine-tuning
for the Novel-View Ambient Sound Synthesis task.

For the w/ finetune setting, we aim to study how our acous-
tic parameter predictor adapts to novel scenes through few-
shot learning by finetuning the pretrained prediction model
on each of the 23 unseen scenes. Specifically, we uniformly
sample the reference locations given the reference budget,
maintaining the same average distance as our reference lo-
cation sampler, but using uniform sampling only. We obtain
the RT60 value as ground truth to supervise the prediction
at these locations, which constitutes few-shot fine-tuning on
sparsely sampled references. After training per scene, we
test the prediction on all walkable locations for each scene
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Figure 6. Visualization of Clustering Results on N2S. Colorized regions are different clusters. The reference location out of existed 11
references that is closest to each cluster center is marked as black star. Our sampler, Vis w/VAB, consistently groups locations that are free
from obstacles more effectively, demonstrating reliability of VAB from simulated to real scenarios.

separately and average the RT60 prediction metrics to report
accuracy for w/ finetune.

Figure 8 and Figure 9 illustrate examples of groundtruth
and RT60 predictions for both seen and unseen scenes, re-
spectively. The groundtruth RT60 map shows that RT60

values tend to be consistent within a room and are higher in
larger spaces without many obstacles, such as open rooms
or hallways. This is because sound takes longer to decay in
these areas due to fewer reflections or diffusion on surfaces.
The RT60 map is typically discontinuous in regions blocked
by obstacles like walls or closed doors.

In scenes seen during training, our predictions closely
match the ground truth. For unseen scenes, while the pre-
dicted values may deviate in some regions, they can still
effectively distinguish different RT60 areas, accounting for
walls and other obstacles that block sound propagation. By
applying few-shot finetuning (w/ finetune) to correct deviated
values, our prediction accuracy can improve significantly.

11. More Visualization Analysis
In this section, we present additional visualizations of our
clustering results using VAB.

11.1. Sim2Real Clustering on N2S
To evaluate the simulate-to-real (sim2real) capability of VAB,
which is trained on simulated data from Soundspace, we
deploy the pretrained visual encoder in a real N2S room. We
cluster the walkable locations using the Reference Sampler

(see Section 7.2) to obtain clusters.
In Figure 6, we visualize the clusters with different ref-

erence numbers (Ref Num = 4, 8, and 11), coloring each
cluster differently. We compare two samplers: Loc only and
our sampler, Vis w/VAB. Since the 11 reference locations are
already fixed in the real room, we mark the existing reference
location closest to the cluster center with black stars, rather
than selecting the walkable location nearest to the center.

Figure 6 shows that Loc only is more likely to incorrectly
cluster locations with obstacles in between, especially with
fewer reference numbers (4 and 8 compared to 11), mak-
ing it less effective at identifying obstacles. In contrast, our
sampler, Vis w/VAB, consistently groups locations that are
free from obstacles more effectively, even without any train-
ing or supervision in the real scene. This demonstrates the
reliability of adapting VAB from simulated to real scenarios.

11.2. Clustering via VAB
We show more visualization exmaples of clustering results
via VAB in Figure 8 and Figure 9, covering both seen and
unseen scenes, respectively. In both figures, the last two
columns display scene clusters in different colors. Our sam-
pler, Vis w/VAB, produces cluster segment maps that closely
align with RT60 segments, which effectively highlights ob-
stacles affecting sound propagation. SoundVista achieves
this by binding visual and acoustic representation through
the VAB module, enabling Vis w/VAB to identify acoustic
regions and key obstacles more effectively than Loc only,
resulting in more reliable clustering outcomes.
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Figure 7. Visualization of Reference Contribution Weights. Colored stars (size proportional to weights) indicate the references and the
blue triangle for the target. w/ VAB effectively incorporates visual cues to make the contribution weights more reasonable.

12. More Details for N2S Real Dataset
We intentionally partitioned a real room space to create dis-
tinct acoustic zones for our N2S benchmark (Section 4.1). A
sound-absorbing divider separates the larger room, while the
smaller concrete-walled room is more reverberant than the
sound-treated main room. The top view of the geometry of

the room is shown as Figure 6. The dataset includes ambi-
ent noise from a refrigerator, coffee machine, air vents, and
fans; which are challenging to isolate and measure. These
add to significant acoustic complexity, although the dataset
includes a single scene.
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Figure 8. Seen Scenes from Soundspace-Ambient Matterport3D Benchmark. First two columns: RT60 maps, with warmer colors
indicating higher values (longer energy decay). Last two columns: Cluster results comparison, with different colors marking different
clusters. Our sampler, Vis w/VAB, provides more reliable clusters and the cluster segments better alignment with the RT60 map.

13. Limitations

Our method relies on reference recordings, requiring a mi-
crophone setup and data collection. These processes can
be integrated with existing camera setups for NVS tasks.
Additionally, the reliability of our reference sampler may
decrease in regions with extremely complex scene layouts.
This could be mitigated by incorporating more representative
3D visual descriptions to enhance the VAB module.

14. Broader Impact
Our pipeline can produce audio recordings that mimic real
recordings from a specific room. However, this capability
can lead to the creation of deceptive and misleading media. It
is worth noting that, our model doesn’t generate new content;
instead, it primarily adapts the pre-recorded audio to sound
as if it were captured from the target positions.
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Figure 9. Unseen Scenes from Soundspace-Ambient Matterport3D Benchmark. First three columns: RT60 maps, warmer colors indicate
higher values. w/ finetune enhances RT60 prediction with few-shot finetuning. Last two columns: Cluster results comparison, with colors
marking clusters. Our sampler, Vis w/VAB, provides more reliable clusters and the cluster segments better align with the RT60 map.
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